The View Up Here

Random scribblings about kites, photography, machining, and anything else

Posts Tagged ‘Sound’

Building the MS Alice Microphone – Part 2

Posted by Tom Benedict on 23/11/2016

This is the second half of a two-part article describing my build of the mid-side Alice microphone, following the Instructable written by Jules Ryckenbusch: Build the MS Alice Stereo Microphone. In Part 1 of this article I ran through how I was planning to build it (mostly following the same steps I used in another two-part series I wrote about another of Jules’s Instructables, Modify a Cheap LDC Condenser Microphone, namely: BM-800 Microphone Conversion Part 1 and Part 2.) I also covered my design for the saddle and post that holds the three capsules in the particular orientations required for Jules’s MS microphone build. (Jules used a different method, using PVC pipe, which you’ll see in his Instructable if you decide to build one of your own.)

Since writing Part 1 all the bits and pieces came in. I was eager to see how the 3D printed saddle and post turned out, and how well the TSB-165A capsules fit.

M-S Alice Capsule Saddle and Post - Unpopulated

I designed the cavities for the capsules at-size, meaning I didn’t leave any slop for fit. The plastic Shapeways uses to make their least expensive printed parts is described as “strong and flexible”. I took them up on that, figuring the part would flex enough to allow the capsules to snap into place. It worked like a charm.

M-S Alice Capsule Saddle and Post - Populated

The fit is snug, but not snug enough to hold the capsules in use. As with my first Alice, I glued the capsules into the saddle with E-6000 adhesive.

I’m a little disappointed with the handling noise on my first Alice mic. I chalk some of that up to the metal saddle and post, but some of it I chalk up to the relatively stiff wire I used to connect the capsule to the PCB. It was stiff enough that manipulating the wire wound up breaking off one of the ground tabs from the TSB-2555B capsule I used on that mic. Rather than repeat that experience, and in an effort to reduce conduction paths for handling noise, I gutted some of the Mogami cable I use for all my microphone projects and used the wires to connect the capsules. (NOTE: It didn’t actually affect handling noise that much. After thumping various bits of the mic, I’ve come to the conclusion the dominant frequency of the handling noise is driven by the resonant frequency of the mesh in the headbasket.)

I already had two Pimped Alice PCBs built, tuned, and ready to go for this project. The remaining steps were to screw one board onto each side of the mic frame, solder the capsule wires to the boards, solder the four 0.022uF capacitors between the ground pin (pin 1) and the remaining pins of the XLR connector (2, 3, 4, and 5), and to solder wires between the XLR and the PCBs.

M-S Alice Internals

Since I oriented the two capsules of the figure-eight mic side-by-side, they won’t fit inside the headbasket with the foam liner in place. So I stripped the foam out before closing up the mic.

The very last step was to build the 5-pin XLR to dual 3-pin XLR splitter cable. There are a number of ways I could’ve done this, but I followed (mostly) Jules’s build on the cable as well, using separate Mogami lavalier cables for each channel. This is a wonderfully floppy wire, and does an excellent job of reducing handling noise transmitted through the cable.

The one change I made to Jules’s design was to jacket the central eight feet of cable in a woven sleeve to keep it from tangling.

M-S Alice Patch Cord

I left the last foot and a half at each end loose, though, to take advantage of the wire’s floppiness. (Hey, that’s actually a word spellcheck recognizes!)

And at long long last I’m able to play with mid-side recording and compare it against my EM-172 based SASS.

SASS vs. M-S Comparison

Big big thanks to the following for making this all possible:

  • Jules Ryckenbusch – for writing the two Instructables that got me going on these microphones
  • Homero Leal – for coming up with the PCB layout for the Alice boards used in Jules’s Instructables
  • Scott Helmke – for designing the Alice circuit in the first place
  • Ricardo Lee and all of the above – for their endless patience with all of my questions and what-ifs
  • Dr. Ing – for designing the Schoeps CMC-5 in the first place, without which none of this would exist

For my own contribution, here’s the link to the MS Alice capsule saddle and post on Shapeways. I’ve listed these at-cost, with no mark up (meaning I don’t see a dime of the 5.35 USD price tag at the time of this writing – labor of love).

Have fun recording!


Posted in Audio, Engineering | Tagged: , , , , , , , , | Leave a Comment »

Building the MS Alice Microphone – Part 1

Posted by Tom Benedict on 11/11/2016

This is a short pair of articles that glosses over most of the details of how I’m building a self-contained mid-side (MS) Alice microphone into a Neewer NW-800 microphone body. Part 1 covers most of the design and preparation, and Part 2 will cover the build.

The reason why this pair of articles is so brief is that most of the nitty-gritty was already covered in another pair of articles: BM-800 Microphone Conversion Part 1 and Part 2. The major differences between that microphone and this one are a change in capsules (Transsound TSB-165A instead of a Transsound TSB-2555B), the number of capsules (three instead of one), the number of Pimped Alice boards (two instead of one), and a change tof XLR connector (5-pin rather than 3-pin).

With the exception of how I’m planning to mount the capsules, all of this follows the Instructable written by Jules Ryckenbusch: Build the MS Alice Stereo Microphone. That’s the real reference for this build, so if you decide to build one of these yourself be sure to follow Jules’s notes.

The easy stuff first:

When I built my first Alice microphone I built three PCBs rather than just the one I needed, so I already have two Pimped Alice boards ready and waiting in the wings. I was on the fence whether to build a second mic around a TSB-2555B capsule or go straight to the MS Alice. After some recent field tests, I decided to commit the two boards to an MS Alice.

Jules pulled a neat trick for getting two signals out of a single XLR connector: use a different XLR connector! In his build he replaced the 3-pin XLR that came with his BM-800 microphone with a 5-pin. The two outputs share a common ground, but have independent signal pins. I’m following this part of his plan to the letter. (As a side note, this also gives me a spare 3-pin XLR connector to use when I finally build out my parabolic mic. New project in the works!)

The only things left to do were to order three TSB-165A capsules (done) and to figure out how to mount them.

Jules has a nice tutorial on how to build a 3-capsule saddle out of PVC pipe, but I had so much fun machining a custom saddle for my TSB-2555B capsule, I couldn’t pass up the opportunity to massively over-complicate life by designing a custom saddle for the MS Alice as well. Here’s what I came up with:

MS Alice TSB-165A Capsule Saddle

Which looks neat and all, but would be stupidly difficult to machine. It’s possible, provided you got rid of, or at least filleted the inside corner between the two side capsules, but it wouldn’t be fun. And since this is all about fun, I cheated. I sent it off to be 3D printed out of nylon. (If this pans out and there’s any interest, I’m happy to make the 3D model available for other people to print.)

So now I’m back to playing the waiting game. I’ve got parts coming in from Redco Audio (5-pin XLR to dual 3-pin XLR splitter cable), Mouser (smaller capacitors for the Alice boards to address the space constraint issue I ran into), Amazon (Switchcraft 5-pin XLR connector, NW-800 body, and associated doodads), JLI Electronics (three TSB-165A capsules), and finally Shapeways (the 3D printed mic saddle).

I’ll write the second half of this series once all the goodies show up.


Posted in Audio | Tagged: , , , , , , , , | 1 Comment »

Alice and Behringer Sitting In A Tree – Part 1

Posted by Tom Benedict on 03/11/2016

The field tests on my BM-800 Alice conversion will have to wait. Late last week I handed it over to a friend for tests I’m not equipped to make, including several mic comparisons. I’m eager to see (and hear!) his results.

Meanwhile my Behringer C-2 mics showed up. These are the ones I placed a bid on over at Ebay before I realized they were coming from Haifa, Israel. Despite the distance the shipping was actually less than FedEx charges to ship a letter-shaped package from the mainland US to Hawaii. (Go figure.) It still ramped the price of the mics up almost to market value, which on Amazon with its super saver free shipping basically means I could’ve ordered them new and had them weeks ago.

But they’re here. And they’re mine. And… to be honest they’re in pretty ratty shape. One of them had something loose in the capsule. If you pointed the mic up and shook it, it made a hellish noise and clipped constantly. Turn it upside down and shake, and you hear something rattling around. The other mic has something massively wrong with its circuit board. It sounds for all the world like a Huey is hovering overhead. Bup bup bup bup bup bup bup… It never ends.

So long story short, I don’t mind gutting these things and building something new. In the short term I put the good capsule on the good mic body so I have one working mic to play with. The other one I started taking apart.

Behringer C-2 Capsule Removed

These have interchangeable capsules, though I don’t know if Behringer (or anyone else) makes any other capsules for it. The one that came with my mics is a hypercardioid. (At least that’s what the icon on the side of the capsule looks like.) Given the size of the vents at the back, I can believe it.

Underneath the capsule is a white plastic plug with a pogo pin centered in it. Not much to look at. And no real clue how to open things up past there.

To gain access to the innards of the mic, peel back the the “Behringer Condenser Microphone” name tape at the base. This reveals a small set screw that should be familiar to anyone with Switchcraft XLR connectors. Screw the set screw all the way in. This releases the XLR connector from the body. Next, center the pad/high-pass filter switch and pull the switch button out with needle nose pliers. Finally, push on the white plastic plug to expose the circuit board.

Behringer C-2 Stereo Pair - Partially Disassembled

Here’s what’s inside:

Behringer C-2 PCB Top

Since one of my mics has a damaged board, rather than figure out how to tweak what’s already here, I went ahead and tried to figure out how to pack a Pimped Alice into the same board space. I started by taking measurements.

The board is 15.5mm wide x 52.35 mm long, and is 1mm thick. The thickness is important because the board slots into the white plastic insert. One nice thing about this method of mounting the board is that there are no screw holes, and except for the humongous XLR pins and the 2mm area that slots into the plastic insert the rest of the real estate on the board is free. The board is mounted just below the centerline of the mic, so there’s vertical room as well. Up to a point, anyway. Those capacitors are 6.5mm diameter x 8mm tall. Nothing bigger than that will fit, even centered on the board.

There’s really not enough room to use through-hole components everywhere, so I converted most of the Pimped Alice circuit to 0805 SMT components. The exceptions are the filter capacitors, the 1Gohm resistor, and the FET.

There seems to be some resistance to using surface mount technology for DIY mics, but SMT has been used for over a decade for DIY robotics and electronics. I’ve built AVR processor boards using SMT components, and figured this wouldn’t be much different. With the exception of the big filter caps and the FET, that’s how Behringer built the original board for the C-2, so I figured it was a safe way to go. As soon as I have a new PCB layout, I’ll send it out for fab.

Meanwhile I started taking apart the capsule. Just looking through the grille, it seems like the C-2 uses a Transsound capsule similar to the TSB-165A Scott Helmke used in the original Alice.

Behringer C-2 Capsule Front

I started by removing the back plate. This is just pressed into place, but it’s a bear to get out. I eventually removed it by gripping it by an inside edge with needle nose pliers (pushing outward), and spinning it out. It took a couple of attempts, but it came apart.

The rear side of the capsule has an open cell foam washer in it, presumably to provide wind protection and to act as a delay plate to shape the hypercardioid pickup pattern. With the washer removed, the back side of the capsule is visible, held in place by a brass retaining ring

Behringer C-2 Capsule Back - Baffle Removed

The holes in the ring are really tiny. My existing pin wrench didn’t work, so I used an old divider with dull points as a pin wrench. There’s a bit of red enamel to prevent the ring from backing out, which took a little force to crack. Once that was done, though, the ring backed out easily. (I’ll need to be sure to apply a fresh bit of enamel when I get the new capsule installed.)

Behringer C-2 Capsule Disassembled Back

Behringer C-2 Capsule Disassembled Front

I was hoping the capsule was a Transsound TSB-165A, the same one Scott Helmke used in his original Alice microphone. Unfortunately it’s not. The capsule in the C-2 is 16mm in diameter x 6mm thick. The TSB-165A is 16.5mm x 8mm. But after some poking around on the JLI Electronics web site I think I found a match: the TSB-160A. The specs are almost identical to the TSB-165A, so it should play nicely with the Alice circuit (yay!), but the form factor matches what’s in the C-2. I’ll order a pair of these when I place the order for the 165A capsules for my MS Alice.

Behringer C-2 Capsule Mesh Outside

Another concern with the C-2 capsule holder is how the capsule is recessed, and how close the edges of the holder come to the input ports on the capsule. From my experiences with my first rev of mic bodies, I know that can color the sound enough to hear it. I’d like to open this up, if possible. It’s a simple enough job on a lathe as long as I can get the grill out.

Behringer C-2 Capsule Mesh Inside

The grill looks like it’s a two-layer mesh that’s either glued or soldered into the capsule holder. That should be easy enough to remove with heat, one way or the other. I might even be able to re-use it if I’m not too rough getting it out.

The grill serves two purposes. First and foremost, it’s an RF shield to keep stray electromagnetic radiation from getting into the signal path. Second, it helps to keep the capsule free of debris. Third, some manufacturers will stick enough mesh in front of the capsule to act as a rudimentary pop filter, and at least reduce the effect of wind. The problem with that third purpose is that you need a lot of tight mesh to pull that off. Enough so that it colors the sound of the mic. Not surprisingly, one of the more obvious mic mods is to remove a layer of mesh from the capsule housing.

But given how open the outer mesh is, I’m afraid it will make the mic prone to RF interference. For now I’ll leave it alone.

The next steps are to finalize the design of the new board, send it out for fab, and source all the components and capsules. But before I can finalize the board design I want to see if I can add in one of the features of the C-2: The switch on the side of the mic lets you select a high pass filter or a -10dB pad. If I can find the real estate on the board to accommodate the switch and the components necessary to add these into the Alice circuit, I will.


Posted in Audio, Electronics, Engineering | Tagged: , , , , , , , , , , , , , , | Leave a Comment »

BM-800 Microphone Conversion Part 2

Posted by Tom Benedict on 22/10/2016

This is the second half of a two-part article describing my conversion of a BM-800 microphone to an Alice microphone using a Transsound TSB-2555B cardioid capsule. All of this is based off of a pair of Instructables written by Jules Ryckebusch: Modify a cheap LDC Condenser microphone and Build the MS Alice Stereo Microphone.

Part 1 of this article showed pretty pictures of the donor mic (a Neewer NW-800 with an excess of bling), a description of the cable that came with the mic (which I don’t intend to use), photos of the mic in various stages of disassembly, and a CAD drawing of the salient features inside the microphone to help others lay out circuit boards for their own conversions.

Since writing part 1, all of the bits and pieces I ordered to do the conversion arrived: enough electronics to build three Alice boards, and a TSB-2555B capsule to put in the first one.

Everything for an Alice Conversion

Before populating the boards I did a test fit to make sure they would actually fit. I was pleased to see how well the screw holes lined up, and I came pretty close with the taper.

NW-800 With Alice PCB

The next step was to populate the boards. Opinions differ on how to wire the high-impedance (high-Z) end of the board, so I started with all of the low-Z components.

The circuit used in Jules’s first article had zener diodes on the output stage to protect it against over-voltage on the XLR pins. The circuit as-built in his second article omits the zeners since the 2N5087 transistors are rated for more than the 48V likely to be seen on an XLR connector. I ordered the zeners, but left them out for now.

Alice Trio with Low-Z Components

After I’d already wired all the boards I installed one in the mic and ran into my first problem: With the board installed right-side-up, the 47uF capacitor pokes up high enough that it interferes with the body tube. For my first mic I’m planning to install the board up-side-down to give the capacitor more room. But if I wind up building the MS mic from Jules’s second Instructable, I’ll need to install new capacitors that lay flat against the circuit board.

BM-800 Alice Board Placement

The reason for the difference of opinions on the high-Z end of the circuit is that it’s sensitive to contamination: leftover solder flux, dirt, dirt combined with humidity, oxidization, etc. on the high-Z end can all cause unwanted noise in the mic. Jules soldered his components to the board without issue. Others have used Teflon standoffs to float that part of the circuit above the PCB. Homero Leal built his Charis mic by point-to-point soldering the high-Z components, letting them float above the board without standoffs. Scott Helmke, the original designer of the Alice circuit, solders the high-Z components directly to the back of the mic capsule. For my first pass at this I soldered the low-Z legs of the FET to the board, but floated the high-Z circuit without stand-offs, similar to Homero’s Charis mic. I can always change my mind later and re-wire them.

High-Z Components Air-Floated

With the board built, the next step was to add 22nF capacitors between pins 1 and 3 and pins 1 and 2 on the XLR connector to provide additional RF noise filtering. After that I installed the modified connector and the board in the mic body.

Alice Board and XLR with RF Filter Caps

The rest of the action takes place inside the headbasket.

It’s possible to cut away the original mic capsule to leave a saddle for mounting the TSB-2555B, but I wanted to make an entirely new saddle. Chalk some of this up to not wanting to make a modification I can’t back out. Chalk some of it up to my wanting a machining project to go along with the electronics project. Either way it needlessly complicates an otherwise pretty simple project.

Space inside the headbasket is tight, so rather than run into more interference issues I fleshed out the 2D CAD drawing and turned it into a 3D model. The space constraints almost entirely dictated the shape of the new saddle and post. The mic frame is drilled and tapped for M2.5 screws on a 10mmx15mm rectangular pattern, only two of which are used on the original saddle. I chose to use all four. The mic wires pass through holes spaced 20mm apart, centered on the long axis of the bolt pattern. In the CAD model I indicated these with 3.13mm holes, but in the final part I cut them as slots to make installing and removing the capsule easier.

Mic Saddle - CAD vs. As-Built

I attached the TSB-2555B capsule to the saddle with E-6000 silicone adhesive. A better method for the saddle shape I used would’ve been a polyurethane adhesive like Gorilla Glue, but I wanted to be able to remove the capsule in case I decide to add shock isolation inside the mic to cut down on handling noise. As-built the capsule can be removed by passing a fine wire between the capsule and the saddle, cutting the silicone bond.

EDIT: The first time through, I missed an important step: One of the charms of the Pimped Alice circuit is the potentiometer next to the 1Gohm resistor. It allows you to bias the FET properly, regardless of which FET you use. The catch is that by definition, if you don’t do anything with the potentiometer it will not be properly biased! In all ignorance I soldered everything up, closed up the mic, and went testing. Even with an improperly biased FET it still performed beautifully. I did go back and do a proper job of it, though.

In Jules’s first Instructable, toward the end, there’s a nice write-up for how to bias the FET. The catch is that this step must be done before the capsule is soldered to the board.

With the FET properly biased and the capsule attached to the saddle and post, all that was left was to put it all together and close it up.

Finished BM-800 / TSB-2555B Alice

I did a quick side-by-side against one of my Primo-EM184 cardioid mics. The Alice runs a little hotter, but not by too much. I’m reserving further judgement on the new mic until I have a chance to get it out in the field and try it on some quiet sources.


Posted in Audio, Electronics, Engineering | Tagged: , , , , , , , , , | 3 Comments »

BM-800 Microphone Conversion Part 1

Posted by Tom Benedict on 09/10/2016

Several posts ago I mentioned a plan to build an MS mic by following an Instructable written by Jules Ryckebusch. Jules used a BM-800 microphone as a donor mic and replaced its guts with two Pimped Alice circuits and three cardioid capsules. After several Ebay vendors whose listings indicated they would ship to Hawaii later changed their story and said they wouldn’t, I finally picked up a BM-800 microphone off of Amazon. The one I got is a Neewer NW-800. (I liked its shock mount better than the other one I found.) It arrived, and I started poking and prodding at it.

Along the way I discovered another reason to use a windscreen on a microphone. This thing is bling central. To be fair some of the other BM-800 mics I found on Ebay didn’t have nearly as much… presence… but this is the one I could get.

Neewer NW-800 Bling

Unless I’m recording birds that are drawn to shiny objects the windscreen will probably become a permanent fixture on this mic, just to keep me from going blind.

Neewer NW-800 Windscreen

Before tearing into the thing I decided to try it as-is. On the face of it it’s a phantom powered cardioid condenser mic. This means plugging it into a device that doesn’t provide some kind of power (aka my laptop, my phone, even my kids’ desktop computer) won’t work.

The mic has a male XLR jack at the back, and came with an XLR-to-3.5mm cable. 3.5mm inputs that provide power typically provide plug-in-power (2.3V to 5V, depending on the device). XLR inputs provide phantom power (typically 12V, 24V, or 48V). That discrepancy made me a little leery of just plugging this into whatever and cranking volts through it. I started by ringing out the cable to see what it was actually doing.

XLR to 3.5mm Cable

Up to this point all the XLR plugs I’ve dealt with have been for balanced signals. That is to say that one pin of the 3-pin XLR is ground (pin 1), another is the positive signal (pin 2), and the third is the inverse or negative signal (pin 3).

3.5mm inputs typically use a TRS connector and unbalanced signals. In the case of the 3.5mm stereo input on my recorders the tip is the left positive channel, the ring is the right positive channel, and the sleeve is ground.

The cable supplied with the BM-800 ties XLR pins 1 and 3 together and routes them to the sleeve of the 3.5mm plug, and routes XLR pin 2 to both the tip and ring of the 3.5mm plug. This effectively turns the balanced output of the mic into two channel mono unbalanced output on the 3.5mm plug, meaning it should be able to be plugged into any 3.5mm stereo input and drive both left and right channels with the same signal. Neat!

What this also means is that as long as the mic can run on a wide range of voltages, the plug-in-power on any recorder should be able to drive this thing. So should the battery box I got from Church Audio. Or by removing the XLR-to-3.5mm cable and plugging in an XLR-to-XLR cable, I should be able to power it with phantom power (12V or 48v – the only two options on my recorder) and use it as a single channel balanced input.

Still leery of running such a wide range of voltages through it, I tried all three configurations anyway. I’m planning to gut this mic, after all, so if I burned it out the loss would be minimal. To my surprise all three worked! The plug-in-power on my DR-70D puts out a little under 3V, and my battery box from Church Audio puts out a little over 9V with a fresh battery. The 48V phantom power on the XLR inputs on the DR-70D put out right around 48V. I noticed a gain difference between the PiP and battery box, but because of the different gains on the XLR vs. 3.5mm inputs on the DR-70D I wasn’t able to tell if the additional voltage was doing anything to the mic itself. (My guess is it doesn’t. To survive that wide a range of voltages I’m guessing the mic has a voltage regulator on board. Past a certain point it’s just dissipating as heat.)

So how does it sound?


How to put this…

I’ve seen the shock mount it came with listed for more than what I paid for the mic. I don’t think this is too far out of line with how it sounds. It’s not bad, mind you. It’s just not anything I’d write home about. A little creative EQing would probably make it a decent podcast microphone. But as for making ambient nature recordings? Mmmm… no.

So without further ado I tore into it to see what I was going to have to deal with.

Neewer NW-800 Disassembly: Assembled

The first step in disassembling the microphone is to unscrew the butt cap. This also releases the shell, which simply slips off to expose the circuit board. The shell is keyed to a tab just under the headbasket which fixes the orientation of the logo on the mic. This is important since the mic is a side-entry rather than end-entry, meaning sound must enter from the side and not the end. Added to that, it’s a directional microphone so it’s only sensitive on one side. Can you guess which side? (Answer: The one with the logo.)

Neewer NW-800 Disassembly: Shell Removed

Some nice features on the inside of the thing: First, there’s a ton of room. Second, there’s a nice frame with mounting holes tapped for M2.5 screws. (More about those in a sec.) The only weird part is the taper on the frame and the circuit board. I like the look of the tapered board, so I decided to taper the boards for my Alice conversion, too, and put mounting holes in the boards to make use of the holes in the NW-800 frame.

Neewer NW-800 Disassembly: Headbasket Removed

Two M2.5 flat head Phillips screws hold the headbasket in place. They’re located just under the headbasket, above the circuit board. Once the screws are removed the headbasket lifts off, exposing the capsule.

Despite the appearance, the capsule in this mic is the same size as the EM-172 and the EM-184 capsules from Primo: 10mm diameter. At this point I was sorely tempted to gut the mic, drop an EM-184 capsule in the mic saddle, and call it quits. But the whole purpose of this exercise is to move beyond Primo all-in-one capsules and try my hand at building more complicated (and better performing!) microphones.

Neewer NW-800 Disassembly: Circuit Board Closeup

All of this starts with the circuit board.

Simple stuff first: The screws are M2.5, spaced 30mm apart. They’re biased a couple of millimeters above the centerline of the cavity. If you’re planning to make a rectangular circuit board to fit inside this mic, that’s probably all you’ll need. (The tube with the logo has vertical walls, so a rectangular board will fit fine.)

Since I wanted to make a tapered board I measured the whole cavity and threw it into CAD. At some point I’ll draw it in 3D, but for now a 2D representation is plenty for me to design the new board outlines. I’m building the Alice boards using through-hole components, so I needed a little more real estate than the original board provided. The 2D drawing of the cavity and the new board outline looks like this:

2D CAD - NW-800 Cavity and Board Outline

I sent the boards out for fab and ordered enough components from Mouser to build out three of them. One is destined to receive the TSB-2555B capsule I ordered from JLI. The other two will eventually be used to build a copy of Jules’s MS mic using three TSB-165A capsules, but that’s a project for another time. Once all the bits arrive I’ll write the second half of this article, which will cover the construction of the TSB-2555B mic.


Posted in Audio, Electronics, Engineering | Tagged: , , , , , , , , | 3 Comments »

Clippy EM184 Cardioid Mics and ORTF

Posted by Tom Benedict on 05/08/2016

I’d planned to write an article describing my trip to Edinburgh for SPIE 2016, but I got side-tracked. That article is yet to come.

I did some audio recording while I was there, but not nearly as much as I’d have liked. I wound up packing all of my sound gear, including my SASS, but the few times I pulled it out it rained. The one time I thought I’d get to use it for sure – poking it out of my hotel room window to record traffic sounds – I found it was too big to fit through the window. I wound up using spaced omnis to record traffic sounds, but the SASS didn’t get used even once. I found myself wishing I had other options.

A number of common stereo techniques require the use of cardioid microphones. Up until my trip to Scotland I only had omni microphones in my bag. There are still some stereo techniques that use omnis that I haven’t tried, but I’ve been wanting to play with cardioid mics for some time. Step one was to buy or make some cardioids.

The same circuit I used to make my EM172 omni mics can be used with other FET-enabled Primo capsules, including the EM184 cardioid capsule. FEL Communications (micboosters) sells these on their site either as individual caps or as matched pairs. I picked up a matched pair along with a pair of Clippy mic bodies, clips, and windscreens. I still had some Mogami cable and Neutrik connectors on hand, so I just drew from that stock to build out the new mics.

The Clippy mic bodies work nicely with the cardioid capsules, and the resulting mics have very little pickup at the back. It’s not zero, though, so you do have to be aware of everything that’s not directly in front of the mic. I’d been warned that cardioids are more sensitive to wind than omnis, and these mics bear that out. They’re stupid sensitive to wind. Even with the foam windscreens and some furries I got from Cat Ears, the slightest bit of wind kills them. I need to figure out some other solution for wind protection.

Step two was to come up with a way to hold the mics so they record a clean, well separated stereo image. There are plenty of choices for this, but the one I chose was ORTF, a technique designed around 1960 by Office de Radiodiffusion Télévision Française (ORTF) at Radio France. (See? Astronomers aren’t the only ones to recycle their acronyms!)

ORTF requires the microphones to be separated by 170mm and angled away from each other at a 110 degree angle. It’s a bit of a pain to set up in the field without some way to gauge the angle, so many people favor other setups such as NOS (Nederlandse Omroep Stichting) in which the mics are separated by 300mm and are angled out by 90 degrees. I wanted to play with ORTF, though, so I decided to solve the setup problems with a fixture.

Clippy ORTF Bar

Since the Clippy mic bodies register nicely with their lapel clips, I used the clips to orient the mics both in location and rotation. The clips have a tab on top that’s just over 6.2mm wide. I made 6.5mm wide slots at either end of a bar to receive the clips.

Clippy ORTF Bar With Mics

I wanted to keep things simple so I didn’t have to fuss with stuff in the field, and this lets me do that. With the clips fully seated in the slots the mics are angled out at a 110 degree angle and are 170mm apart. It takes more time to unroll the cables than it does to install the mics on the fixture. And the flat bar packs down a lot smaller than my SASS.

Clippy ORTF Bar Slot Detail

The bar I used was just over 4mm thick. I cut the slots to leave 2mm of material for the mic to clip to. This wound up being a little thin, but it made for a nice, deep slot to register the clip in.

Clippy ORTF Bar Velcro

The bare metal of the bar was too slick for the clip to get any real grip, so I put a tab of Industrial Velcro on the bottom of the bar under each of the slots so the clips would have something to grab onto.

I’m pleased with how easy it is to use this setup, and it’s tough to beat how compact it is. But I’m not 100% satisfied with how it works in the field just yet. I already mentioned the wind issue. Even with double protection the mics saturate when almost any amount of wind touches them. They’ll probably fare better inside  a Rycote or a Rode blimp, but for now I’ll have to save them for wind-free environments.

The sound is also significantly different from that of my SASS. (Sorry, no side-by-side comparisons yet.) The SASS picks up more reverberation than the ORTF setup, so there’s more of a sense of the space with the SASS than with the ORTF. But you don’t always want that sense of space. During an earlier test I had one of my omnis and one of the cardioids in a car. The omni picked up so much of the car noise, it was difficult to hear the people in the car speaking. The recording from the cardioids was much cleaner.

Needless to say there’s still plenty of testing to be done. Once I learn the strengths and weaknesses of this setup and have a better handle on wind protection, I’m sure it’ll see plenty of use.


Posted in Audio, Engineering | Tagged: , , , , , , , , , , , | 4 Comments »

IDCD 2016 – Part 2

Posted by Tom Benedict on 02/05/2016

Cloud Forest

As it turns out it did rain, but my gear survived!

Unfortunately the sound of the raindrops falling on the koa leaves that lined the forest floor dominated the soundscape during the dawn chorus. Koa leaves are very flat, and provide no loft to the forest floor to absorb the shock of a raindrop hitting. It has all the acoustic properties of water drops hitting wet cardboard. Even more unfortunate, the low-slung arrangement of my SASS meant that the microphones were only about 12″ from the forest floor. I basically close-mic’ed the raindrops, and left the birds in the diffuse soundfield. That’s the opposite of what I wanted!

But I’ll let you judge for yourself. Here’s the dawn chorus from the Upper Waiakea Forest Reserve in its entirety:

(I still haven’t figured out how to make a nice, neat link to Soundcloud files.)

Despite the rain I’m taking it as a win. The gear setup works, I can leave it deployed overnight, and it can survive rain. YAY! But it places the mics too close to the ground for it to ever work well with rain. I’ll have to come up with another arrangement for recording rainfall, preferably something that lets me position the mics a good deal higher up in the air. (More R&D!)

In case you’re wondering what the birds sound like when it’s not raining, this is a sample from the evening before International Dawn Chorus Day, before the birds went to bed and well before the rain started.

Unfortunately, despite being over a mile from the highway some traffic noise is still audible in parts of the full-length track. The next time I do this I need to find a more secluded spot to set my gear.


Posted in Audio | Tagged: , , , , , , | 1 Comment »

Mistakes Were Made

Posted by Tom Benedict on 01/04/2016

If I ever write an autobiography I’m calling it “Mistakes Were Made”. It’s an accurate statement that can be interpreted with a straight face or with a smile, and it does a good job of summing up the parts of my life that make decent stories. Let’s face it: It’s fun to read about other people’s mistakes!

Last Friday a storm system rolled through that brought with it real thunder and lightning. As strange as it sounds the weather in Hawaii doesn’t lend itself to thunderstorms, so I knew this was a rare and wonderful event, and a unique chance for me to record thunder rolling across the sky. As broken as I was (and am!) as the day darkened I grabbed my SASS and stand, slung my sound bag over my shoulder, shoved two trash bags in my pocket, and headed out.

I live across the highway from a ranch, so getting away from intruding sounds is as straightforward as crossing the highway and walking until I can’t hear anything any more. Time was of the essence, so I walked as quickly as my neck and back would let me. All the while the thunder was coming from every part of the sky, rolling from horizon to horizon, and stirring up echoes from the nearby mountains. It was perfect! When I deemed I’d gone far enough I set up the stand, took off my backpack and found…

You know when you see a school kid with their book bag, and it’s unzipped and stuff is hanging out and you tell them, “Zip up your bag! You’ll lose something!” and they, one way or another, flip you off?

I found that my backpack was unzipped, and had been from the moment I left home. In the dark I hadn’t checked, and hadn’t seen. By then I had crossed a stream, walked at least a mile through tall grass, and stepped around countless cow patties. With a sinking heart I checked to see what was missing. To my intense relief the only things unaccounted for were my three contact mics – stuff I’d built myself. I was lucky! But I still kicked myself for losing gear.

I had to set those thoughts aside and get busy if I wanted to record thunder, though. So I pulled out my recorder and cables, and started hooking everything up. Just as I finished plugging everything in, the first of the rain hit.

What I’d assumed was a lighter patch of cloud upwind of me turned out to be a rain line. I pulled the cables back out of my recorder, zipped everything up in my bag, and pulled a trash bag over it and over the SASS. I’ll just wait this out, I thought, It can’t be that much rain!

It was that much rain, and it just kept getting harder. I couldn’t even hear the thunder any more because of how loud the rain was against the grass and rocks. Without having hit the record button even once, I picked up my gear and started the long, slow, wet slog back home.

Good news is I found one of my contact mics along the way! The next day I went back and found a second. The only one missing is the one I made with an alligator clip for clipping onto fences and the like, which only took me an hour or so to make. As dumb as my mistake was, the cost in the end wasn’t all that high. Lesson learned.

But I still wish I’d recorded some of that thunder!


Posted in Audio | Tagged: , , , , , , , , , | Leave a Comment »

DIY Microphone: EM172 Capsule and XLR Plug

Posted by Tom Benedict on 05/03/2016

This is the last in a four part series about powering the Primo EM172 microphone capsule. Part 1 outlined the problem of how to provide 5-10v to the capsule and predicted some results. Part 2 shared some results and pointed out that the gain differences between inputs on my recorder invalidated my predictions. Part 3 discussed my reasons for going with XLR connectors on all my microphones, and some of the details of that. This last part puts it all together into a step-by-step DIY for building microphones with Primo EM172 capsules, powered by 48v phantom power on an XLR plug.

If you need to build a microphone based around the EM172 capsule that plugs into the 1/8″ mic jack on your recorder, or a laptop, tablet, whatever, there are already several excellent tutorials out there. Rather than adapt this one to your needs, refer to one of the existing tutorials. The two I used when I first started building EM172 microphones were the ones on Zach Poff’s page and the one on Wild Mountain Echoes.

In this DIY I’m going to assume you already have a plan for making a mic body. I made mine out of Delrin bar stock on a lathe. Others have used Sharpie pen caps, which also provide a nice clip for clipping the mic to things (see the tutorial on Wild Mountain Echoes), PVC pipe, brass tubing, etc. When mounting the mic in the mic body, make sure the front of the capsule is flush with or slightly proud of the mic body. Don’t recess it. I made that mistake with my first set of mics and wound up with mics that sounded like they were inside a sewer pipe. If in doubt experiment by wiring up the mic completely, plugging it in, and listening to it as you slide it in and out of the mic body you plan to use. After all, this is DIY. Experimentation is part of the deal.

Primo BT-EM172 to P48 XLR Wiring

Credit for the circuit goes entirely to David McGriffy, and credit for the component choice goes entirely to David McGriffy and Ricardo Lee. Ricardo Lee’s writeup, SimpleP48wm61, goes into the theory of the circuit and the reasons for the component choices in depth. It’s the real reference for this. (In order to use that link to download Ricardo’s file, you may need to be a member of the micbuilders group on Yahoo!. If you’re doing this DIY you’re a mic builder, so it’s not a stretch.)

EDIT: A couple of weeks ago Akira So brought to my attention that I had the capacitor poloarity reversed from how David McGriffy and Ricardo Lee have it in SimpleP48. I’ve since corrected the schematic here. Credit where credit’s due.

EDIT: Akira also pointed out that my value for R (120k) resulted in something like 1.3-1.5V at the capsule. I experimented with a number of resistors to see what value of R would produce 7.5V at the capsule on my recorder, and for a Tascam DR-70D, R=40k produces just over 7.5V. When you do this build, you will have to find what works best for your equipment.

EDIT: I also swapped the supplier for the EM172 from Frogloggers to Micbooster (FEL Communications). I haven’t heard from Gene at Frogloggers in a while. Hoping he’s doing ok.

For my build I used the following:

I also used some metal tape (copper in my case, from the local gardening center), heat shrink of various sizes, and the solder I found on the bench in the lab. (My Alphametals solder I’ve been using for the past 20 years isn’t ROHS certified, so I can’t say “use this stuff, it’s great!”)

Not including the tools necessary to fabricate the mic bodies, you’ll also need:

  • Soldering iron (temperature regulated if possible)
  • Source of heat for heat shrink (heat gun, lighter, etc.)
  • Assortment of wire cutters, strippers, fine tip pliers, etc.

Since most of the bodies people use for these require the mic to slide in  from the front end of the housing, we’ll start with the mic capsule.

EM172 Back End

The first step is to strip one end of the cable, trim back the red and white wires to a workable length, and still leave plenty of shield exposed. The red and white wires are then soldered onto the appropriate pads on the capsule.

Warning: The EM172 capsule is sensitive to heat. These two photos were made with a capsule I’d killed using an unregulated soldering iron, which is why the capsule looks a little ugly. If you have access to a regulated iron set your iron no higher than 735C and don’t hold the iron on a pad for more than a few seconds. If you don’t have access to a regulated soldering iron, be sure to get EM172 capsules with stub leads already soldered in place. The tutorial on Wild Mountain Echoes uses capsules with stub leads, so you can see how she did it. Do all your work on the stub leads. Don’t fry your microphones!

EM172 With Wires

Now we build the shielding around the capsule itself. Insulate the sides and back of the capsule with some heat shrink.

Capsule Isolated

Be sure to account for every strand in the shield as you bring it up and over the heat shrink. Wrap with foil tape and trim back the shield so no wires protrude. Be sure no wires cross over the heat shrink and touch the front of the capsule.

Making a Shield

Apply a second layer of heat shrink over the foil tape. I like to apply a short length of colored heat shrink to help me identify which mic is which when I’m running wires and plugging things in out in the field.

Heat Shrunk Ready To Go

At this point go ahead and run the mic cable through your mic body, but don’t mount the capsule just yet. Once you’ve soldered the connector end of the cable, it’s a good idea to test everything to make sure you didn’t make any soldering mistakes, and to make sure the capsule didn’t get damaged during soldering. Strip the other end of the cable, leaving a little more wire to work with than on the capsule end. Thread the wire through the end cap for the XLR connector and set it aside. Since the XLR connector provides its own shield you don’t have to do any metal tape trickery on this end. Gather the wires from the cable’s shield, twist into a bundle, and cover with heat shrink tubing. This is also a good time to apply a length of colored heat shrink to match the capsule end of the cable.

Cable Prepped With Shell

Grab the XLR connector body in a vise or some other holding fixture. If you don’t have a vise, a set of vise-grip pliers with tape over the serrated part of the jaw works well. Just don’t grab it so hard that the connector body is damaged or distorted. Another way to hold these connectors that works great is to have the mating connector screwed into a board. Plug the connector you’re working on into its counterpart and solder to your heart’s content. (I used a vise.)

Trim back the leads on the capacitor and resistor to something reasonable that’ll fit inside the XLR connector. Save the snipped off bits of the leads. One of these works well to bridge from pin 1 to the ground tab.

Resistor and Capacitor

Solder a leftover component lead from pin 1 to the ground tab. Next, solder one end of the resistor to the ground tab as well. Next, solder the (-) end of the capacitor to pin 2. Finally, tie the two free ends of the capacitor and resistor together.

XLR Plug with McGriffy Components

All that’s left is to solder the cable onto the plug. Red goes to pin 3, white goes to the (+) lead of the capacitor as well as the free end of the resistor, and the cable’s shield is soldered to the ground tab. (In this photo the connector is rotated 180 degrees from how it’s drawn in the schematic, but that’s how the solder cups are oriented. Flip it around in your mind and it’ll make sense.)

XLR Plug with Cable

At this point your microphone’s electronics are finished. Put the connector together and screw things tight.

This is a good time to test the mic to make sure nothing went wrong. Plug it into your recorder, turn on phantom 48v power, and dial up the gain. If all went well you should have a low noise microphone ready to be installed in its mic body. If not, go back and check each step to find out what went wrong.

Finished Mic

Have fun recording!


Posted in Audio, Electronics, Engineering | Tagged: , , , , , , , , , , | 70 Comments »

Powering the EM172 Capsule – Part 3: Capitulation

Posted by Tom Benedict on 23/02/2016

I made up my mind about powering my EM172 microphones. Ultimately this decision had less to do with how I was powering the microphones than how I was plugging the mics into the recorder. One of the things I discovered when I wrote my last post was that the Tascam DR-70D uses completely different amplifiers for the XLR inputs and the 1/8″ inputs. Different form factor, obviously; different impedance; different gain. It’s that last part that really drove this decision.

The gain ranges on the 1/8″ plug are +3dB, +11dB, +26dB, and +38dB. The XLR gain ranges are +21dB, +36dB, +51dB, and +63dB. While I was performing side-by-side tests I kept having to crank back the gain on the XLR input to match the levels on the 1/8″ input. As I tested with quieter and quieter subjects it finally hit me: +38dB of gain just wasn’t enough to bring up the levels of some of the subjects I want to record. The XLR input gave me more gain to play with. The last test I ran was what finally convinced me. Even with the gain cranked all the way up on the 1/8″ input mics, I couldn’t get the sound levels over -25dBFS. The recording was just too quiet to use. I cranked up the gain on the XLR input, and was able to get -12dBFS with the same subject.

Good news is the mics really do perform better with the 9.6v bias voltage David McGriffy’s circuit provides. So this is a win-win.

The lavalier mics were no problem to convert. I bought a stash of Neutrik XLR connectors when I started this whole investigation, so it was just a matter of lopping off the 1/8″ connectors and soldering up the XLRs with the resistor and capacitor from McGriffy’s circuit.

XLR-Converted Lavalier

My SASS was another story. I really hate having things with cords that can’t be unplugged, so I wanted to connectorize everything and use extension cables. Only problem: I’m a beginner! So I had no idea how all the connectors worked.

After some Googling and image searching I learned that:

  • XLR extension cables are gender-inspecific. One end is male, the other is female.
  • Female XLR connectors are the ones with the latch. This is true of both panel and cable connectors. So female panel connectors have a latch, but male panel connectors don’t. (This confused me.)
  • Neutrik makes a crapload of XLR connectors you can choose from. It’s worth looking them up in multiple catalogs to find out which series were developed to fix the bugs in previous series. Though it’s really hard to go wrong, so long as you get all the genders right. These things are built like tanks.

I picked up a pair of pre-built 10′ extension cables for a little over the price of the connectors themselves along with some male panel jacks to install in the SASS. Installation meant cutting into the back of my SASS, but it went quite smoothly and the results look (and sound!) nice. (Yeah, this is an infrared photo. Ironwood trees look like Dr. Seuss trees in the IR, so I just had to play.)

SASS Back in the Field

Meanwhile I figured it was finally time to solve the issue of wind protection. A few months back I learned I’m really REALLY bad at sewing fake fur. I did some reading since then, so I think I know what I did wrong. But rather than getting stalled on my own lack of sewing skill I ordered a pair of lavalier windscreens from Cat Ears. They fit over my oversized mic bodies, but they’re too small to go over a foam windscreen. I probably needed the larger ones. They do a decent job by themselves, but in wind over 15-20kts the mics still suffer from wind noise. Good enough to use the lavs as tree ears, but not enough to use them at the beach in solid wind.

Cat Ears Windscreens

Now I just need to solve the issue of wind protection for my SASS. Back to learning to sew fur…

In any case my gear and I are off the soldering bench and back out in the field. Finally. YAAAAAAAY!


Posted in Audio, Electronics, Engineering | Tagged: , , , , , , , , , | 1 Comment »