The View Up Here

Random scribblings about kites, photography, machining, and anything else

Posts Tagged ‘SASS’

(Yet More) Microphone Tests

Posted by Tom Benedict on 19/12/2016

Since writing my last post Homero Leal pointed out that I could mitigate some of the harshness of the Alice microphone (for field recording, mind you) by adding a capacitor across the 2.2k drain resistor. I didn’t have the size I needed (6.8nF), but I had everything to make a similar modification by adding an 8.2nF capacitor in series with a 750 ohm resistor, both across the 2.2k drain resistor. All of this is spelled out in Ricardo Lee’s ChinaMod+U87.doc file on the micbuilder forum.

Alice with ChinaMod U87

I walked out into the park behind my work, recorded for about five minutes, and headed back inside to modify the microphone. After adding the HF EQ mod I walked back out into the park and recorded again.

Prior to the mod my recording had a background hiss that sounded like microphone self-noise. I knew from testing the mic inside my car that it’s not, and is actually a sound from the environment. While testing the mic with a 22″ parabolic dish a couple of weeks ago I panned around to try to identify the source. I’m almost certain the hiss comes from the sounds of tree leaves rattling against each other in the wind. It only takes a breath of wind to make the leaves rattle, so the sound is almost always there. After the mod, that background hiss was reduced quite a bit. Enough so that I wanted to try it more rigorously out in the field.

Last night conditions were almost perfect. We had a storm system rolling in, the air was still, and the sky was overcast. Perfect conditions for people to stay home, get off the road, and let people like me lurk in the shadows with headphones on. I packed both my Alice microphones along with my SASS and Olson Wing, and headed out to an old cane haul road to record coqui frogs and insects. I was rained out in the end, but even that worked to my favor.

The tests!

Alice with HF EQ vs. Stock Alice

This is an A-B test between the Alice with Ricardo Lee’s HF EQ mod (thanks for the pointer, Homero!) and an unmodified Alice. The mics alternate every ten seconds, with a two-second cross-fade. That’s probably excessive on the cross-fade, but c’est la vie. Keep in mind there was very little wind during the test, so the difference is subtle. But it’s there.

SASS vs Olson Wing

While I was there I also tested the SASS against the Olson Wing. In this case both were populated with Primo EM-172 capsules. After I got home I realized I had wind protection on the SASS, but none on the Olson Wing. So this isn’t a fair test of frequency response, but it should be a fair test of the depth of stereo imaging, and to some degree, sound localization. (The frogs really don’t move around that much.)

I was content to let this setup run for a while, but it started to rain. Without any rain protection on either array, I knew the rain would eventually soak the mics. So I packed it all in and pulled out my rain gear.

Rain Gear

I’m still trying to get a good, clean recording of rain. A while back I took a tip from Gordon Hempton and built a microphone rain shelter. It’s a hard aluminum plate covered with two inches of non-woven air filter material. The aluminum plate keeps the mics dry, and the filter material diffuses the rain drops to a soft “fuff” sound. I also added a layer of carpet foam underneath to cut down on the residual “fuff” sound. It’s set up to take my DIY shock isolator, a small ball head, and my ORTF bar. (Sorry, no pictures of the whole setup just yet.) With the whole mess set up on a tripod or c-stand, it protects the mics from rain while minimizing the sound of the drops hitting the rig.

Finally finally I had a chance to use it in the field. And it worked! It worked great!

Only problem is that I managed to damage one of my EM-184 cardioids while testing the Alice mics. It barely responded at all, and produced a deep wumping noise in the recording instead. So the stereo recording is rubbish, unfortunately. I thought the wump sound was the mic picking up rain drops hitting the tripod legs, so I switched to a c-stand, re-arranged, tied up cables, did all sorts of things. None of it helped. After about half an hour I finally admitted to myself that the mic wasn’t working, and packed it all in.

But the rain gear worked! It worked great!

And once I dried the EM-184 mics out they worked great again, too. (Lesson learned:Don’t let it rain on your mics. DOH!)

All in all it was a good night of testing. I have one other test I’d like to do with the two Alice mics (ocean waves!), and I’d like to do one more side-by-side of the SASS and the Olson Wing to see if I can shorten the length of the Olson Wing and still get a good boundary effect out of it. But I’m pleased as punch with the rain gear.

Tom

P.S. I also learned that I need to finish this project before watching another season of Stranger Things. There’s something about driving way the hell out on some abandoned road to some spot in the woods in the middle of nowhere with fog and rain and nothing but the buzz of the insects and the calls of the frogs to… WHAT THE HELL WAS THAT?!

Posted in Audio | Tagged: , , , , , , , , , , , | 8 Comments »

Whales, Waves, and Unexpected Urination

Posted by Tom Benedict on 12/12/2016

“See any whales?”

I’d been recording at Kiholo Bay for several hours before the man spoke to me, but the first hour had been plagued by technical issues. For some reason my DR-70D kept reporting a write timeout error – something usually attributed to using a slow memory card – but I knew the card was good. Helicopters and airplanes had ruined the rest of the first hour.

At that point I was almost done with my first completely clean hour of waves on my SASS and Mid-Side setup. My other recorder, a DR-05, was positioned at a small beach to the south of me, recording waves receding off of loose pebbles.

I turned around to see who’d spoken to me. He was an older man who’d been hiking along the coast and had stopped to talk. I knew his words would show up on the recording, so I figured if I’m editing I’m editing. I might as well be civil about it.

“No, not from here.”

He nodded and walked on. I turned back to my gear, but out of the corner of my eye I saw him turn and head down to the little pebble beach.

People here are, on the whole, really nice about other people’s stuff. At one point years ago I left some kites at Hapuna Beach, one of the busiest beaches on the Big Island. It wasn’t until I was unloading my car at home that I realized my kite bag was missing. I jumped back into my car, headed back to the beach, and found that someone had brought my kites up off of the sand and left them for me at the showers. People here really are great.

But still… Strange guy hiking down to a beach where I’d left gear… I didn’t want him knocking my gear over inadvertently or anything. So I kept an eye on him as he made his way down to the beach and… proceeded to relieve himself not four feet from where I’d left my gear. Recording sound. All sound. Beach sound. And now his sound. His very personal sound. He kept glancing up at me like I was being rude. I did turn away while he was occupied with his… task. But eventually I knew he’d finish and realize I’d been recording him. Which he eventually did.

One of my more awkward sessions.

(But I got a lot of really good winter wave on rock sounds!)

Anyway, I think I’ve finally answered some open-ended questions about microphones. The Alice microphones I’ve been building are beautiful, crisp, and punchy, but not all that great for recording outdoor sounds. They’re very bright, which works great for a number of subjects. Waves, streams, and wind in the trees just don’t happen to be any of those subjects. Unfortunately those are the subjects I’m interested in.

I also don’t think I’m a huge fan of mid-side recording for creating big spacious soundscapes. No matter how much I play with the balance of mid to side, I just can’t get as much of a sense of space as I do with the SASS. I find myself firmly in the camp of the partially baffled microphone array. So for now I’ll save the mid-side and LDC Alice mics for indoor recording and go back to my Primo-based mics for nature. (Though I still intend to convert my Behringer C-2 mics to surface-mount Alice electronics. They’ll make good instrument mics, if nothing else.)

There’s one last test I want to repeat, though. Early on I built an Olson Wing – a baffled double-boundary array invented by Curt Olson. This pre-dated my SASS. I remember I liked the sound, but that I liked the sound of my SASS better. Now that I’ve had a chance to try a number of other stereo recording techniques (X-Y, A-B, ORTF, M-S, and SASS), I’d like to resurrect my Olson Wing and try it and the SASS side-by-side. I’ve still got all the bits, so it’s just a matter of rigging everything back up and getting out with the gear.

It’s something of a pressing question because of something else that happened. Earlier today my wife bought me an early present: a pair of ammo boxes.

I joked with the kids that they’re for the Zombie Apocalypse. They just rolled their eyes. They know me too well. She got me the ammo boxes for a recording project.

One of the problems with unattended recording is that conditions change, weather turns, and gear gets rained on. My first unattended overnight session wound up that way. I set up to record the dawn chorus in the Upper Waiakea Forest Reserve on International Dawn Chorus Day, but during the night the clouds came in and rained on my gear. The evening chorus was spectacular, but with the rain on the leaf mast making a staccato drumming sound, the dawn chorus part of the recording was practically useless.

My gear survived, but the weather proofing was tentative at best. I’ve been looking for a good way to build a completely watertight, rain proof recording setup. Enter the ammo box.

Ammo boxes are made out of steel. They’re tough. And they have a rubber weather seal that’ll keep out a hurricane. Perfect for cramming recording gear into! My plan is to use the larger of the two boxes to house my gear, and either build an Olson Wing or an SASS around the box, depending on which one I like better. The microphones would be the only thing poking out. Everything else goes inside the box, which can then be latched shut. The whole unit can then be left overnight without any chance of rain getting inside and killing my gear.

Or pee, for that matter.

Posted in Audio, Engineering | Tagged: , , , , , , , , , , , , , , | Leave a Comment »

SASS and ORTF Side-by-Side

Posted by Tom Benedict on 09/08/2016

Or top and bottom, rather.

I had the opportunity to stick my SASS rig and my newly minted ORTF bar on the same mount, one right over the other, and use them to record coqui frogs in a eucalyptus forest on the Big Island of Hawaii.

Of course whenever you record in a forest here you also get insects.

And if you happen to be within a hundred yards of a bunch of… dinosaurs? You also get them.

And the rain.

Ok, just a bunch of stuff. Anyway, here’s the recording. It’s an A-B test, switching between SASS and ORTF at thirty second intervals with a two second cross-fade.

My take: The two are different. (Well duh!) They provide different sounds. Neither one is “right” to my ear, just… different. But I’ll let you decide for yourself.

Tom

P.S. No I didn’t say which is which in the recording. What would be the fun of that?

Posted in Audio | Tagged: , , , , , , , , | 2 Comments »

Mistakes Were Made

Posted by Tom Benedict on 01/04/2016

If I ever write an autobiography I’m calling it “Mistakes Were Made”. It’s an accurate statement that can be interpreted with a straight face or with a smile, and it does a good job of summing up the parts of my life that make decent stories. Let’s face it: It’s fun to read about other people’s mistakes!

Last Friday a storm system rolled through that brought with it real thunder and lightning. As strange as it sounds the weather in Hawaii doesn’t lend itself to thunderstorms, so I knew this was a rare and wonderful event, and a unique chance for me to record thunder rolling across the sky. As broken as I was (and am!) as the day darkened I grabbed my SASS and stand, slung my sound bag over my shoulder, shoved two trash bags in my pocket, and headed out.

I live across the highway from a ranch, so getting away from intruding sounds is as straightforward as crossing the highway and walking until I can’t hear anything any more. Time was of the essence, so I walked as quickly as my neck and back would let me. All the while the thunder was coming from every part of the sky, rolling from horizon to horizon, and stirring up echoes from the nearby mountains. It was perfect! When I deemed I’d gone far enough I set up the stand, took off my backpack and found…

You know when you see a school kid with their book bag, and it’s unzipped and stuff is hanging out and you tell them, “Zip up your bag! You’ll lose something!” and they, one way or another, flip you off?

I found that my backpack was unzipped, and had been from the moment I left home. In the dark I hadn’t checked, and hadn’t seen. By then I had crossed a stream, walked at least a mile through tall grass, and stepped around countless cow patties. With a sinking heart I checked to see what was missing. To my intense relief the only things unaccounted for were my three contact mics – stuff I’d built myself. I was lucky! But I still kicked myself for losing gear.

I had to set those thoughts aside and get busy if I wanted to record thunder, though. So I pulled out my recorder and cables, and started hooking everything up. Just as I finished plugging everything in, the first of the rain hit.

What I’d assumed was a lighter patch of cloud upwind of me turned out to be a rain line. I pulled the cables back out of my recorder, zipped everything up in my bag, and pulled a trash bag over it and over the SASS. I’ll just wait this out, I thought, It can’t be that much rain!

It was that much rain, and it just kept getting harder. I couldn’t even hear the thunder any more because of how loud the rain was against the grass and rocks. Without having hit the record button even once, I picked up my gear and started the long, slow, wet slog back home.

Good news is I found one of my contact mics along the way! The next day I went back and found a second. The only one missing is the one I made with an alligator clip for clipping onto fences and the like, which only took me an hour or so to make. As dumb as my mistake was, the cost in the end wasn’t all that high. Lesson learned.

But I still wish I’d recorded some of that thunder!

Tom

Posted in Audio | Tagged: , , , , , , , , , | Leave a Comment »

Powering the EM172 Capsule – Part 3: Capitulation

Posted by Tom Benedict on 23/02/2016

I made up my mind about powering my EM172 microphones. Ultimately this decision had less to do with how I was powering the microphones than how I was plugging the mics into the recorder. One of the things I discovered when I wrote my last post was that the Tascam DR-70D uses completely different amplifiers for the XLR inputs and the 1/8″ inputs. Different form factor, obviously; different impedance; different gain. It’s that last part that really drove this decision.

The gain ranges on the 1/8″ plug are +3dB, +11dB, +26dB, and +38dB. The XLR gain ranges are +21dB, +36dB, +51dB, and +63dB. While I was performing side-by-side tests I kept having to crank back the gain on the XLR input to match the levels on the 1/8″ input. As I tested with quieter and quieter subjects it finally hit me: +38dB of gain just wasn’t enough to bring up the levels of some of the subjects I want to record. The XLR input gave me more gain to play with. The last test I ran was what finally convinced me. Even with the gain cranked all the way up on the 1/8″ input mics, I couldn’t get the sound levels over -25dBFS. The recording was just too quiet to use. I cranked up the gain on the XLR input, and was able to get -12dBFS with the same subject.

Good news is the mics really do perform better with the 9.6v bias voltage David McGriffy’s circuit provides. So this is a win-win.

The lavalier mics were no problem to convert. I bought a stash of Neutrik XLR connectors when I started this whole investigation, so it was just a matter of lopping off the 1/8″ connectors and soldering up the XLRs with the resistor and capacitor from McGriffy’s circuit.

XLR-Converted Lavalier

My SASS was another story. I really hate having things with cords that can’t be unplugged, so I wanted to connectorize everything and use extension cables. Only problem: I’m a beginner! So I had no idea how all the connectors worked.

After some Googling and image searching I learned that:

  • XLR extension cables are gender-inspecific. One end is male, the other is female.
  • Female XLR connectors are the ones with the latch. This is true of both panel and cable connectors. So female panel connectors have a latch, but male panel connectors don’t. (This confused me.)
  • Neutrik makes a crapload of XLR connectors you can choose from. It’s worth looking them up in multiple catalogs to find out which series were developed to fix the bugs in previous series. Though it’s really hard to go wrong, so long as you get all the genders right. These things are built like tanks.

I picked up a pair of pre-built 10′ extension cables for a little over the price of the connectors themselves along with some male panel jacks to install in the SASS. Installation meant cutting into the back of my SASS, but it went quite smoothly and the results look (and sound!) nice. (Yeah, this is an infrared photo. Ironwood trees look like Dr. Seuss trees in the IR, so I just had to play.)

SASS Back in the Field

Meanwhile I figured it was finally time to solve the issue of wind protection. A few months back I learned I’m really REALLY bad at sewing fake fur. I did some reading since then, so I think I know what I did wrong. But rather than getting stalled on my own lack of sewing skill I ordered a pair of lavalier windscreens from Cat Ears. They fit over my oversized mic bodies, but they’re too small to go over a foam windscreen. I probably needed the larger ones. They do a decent job by themselves, but in wind over 15-20kts the mics still suffer from wind noise. Good enough to use the lavs as tree ears, but not enough to use them at the beach in solid wind.

Cat Ears Windscreens

Now I just need to solve the issue of wind protection for my SASS. Back to learning to sew fur…

In any case my gear and I are off the soldering bench and back out in the field. Finally. YAAAAAAAY!

Tom

Posted in Audio, Electronics, Engineering | Tagged: , , , , , , , , , | 1 Comment »

Pseudo-SASS Array

Posted by Tom Benedict on 03/09/2015

Following the successful testing of the new mics, I turned my attention toward building a pseudo SASS array. My prototype design was a copy of a copy of a copy of… well… a copy. This becomes important later, because it’s lessons learned from one of those copies that drove part of my final design. First, a bit of history, mostly gleaned from Vicki Powys’s web site:

The SASS, or Stereo Ambient Sampling System, was designed by Michael Billingsley in 1987 for Crown International. It was (and still is) aimed at recording music performances, audiences, and other subjects that lend themselves to stereo recording. It offers relatively strong stereo separation in a small package. Crown sold the SASS with microphones built into the system, which worked well for its intended purpose. But the original microphones exhibited a high noise floor, and weren’t well suited for quiet subjects. Lang Elliott and Michael Billingsley modified a Crown SASS to work with higher-end microphones, and Walter Knapp took that concept and offered re-tooled Crown SASS units that would take, among other mics, the Sennheiser MKH20. This made it a viable choice for recording quiet ambient sounds and field recording.

More variations tailored to field recording continue to be made. Rob Danielson’s PBB2N, built out of wood and PVC pipe along similar lines to the Crown SASS, takes the same range of microphones as the units made by Walter Knapp, and offers better bass response. Vicki Powys, concerned about the weight of a wood array, took that concept and made her own version out of dense closed-cell foam (pool floaties) using Primo BT-EM172 capusles. After building her foam SASS, she did side-by-side tests with it against a Crown SASS with MKH20 microphones. The performance of the two were remarkably close.

The idea behind the Crown SASS, Rob Danielson’s PBB2N, and Vicki Powys’s SASS-LN2, is to baffle the microphones so that the array acts as a pseudo-binaural stereo pair similar to the human head. The wings act as boundary surfaces, and the foam baffle in the center partially absorbs sound from unwanted angles. The end result is a higher gain than a bare microphone, and considerably better separation than two microphones arranged as an X-Y pair. This photo of a Crown Audio SASS-P MkII was a later model that used PZM mics, but the overall shape didn’t really change much from the original SASS:

I built my prototype based off of measurements I took from a photo of an original Crown SASS, scaled to the overall size of Vicki Powys’s SASS-LN2. I wanted to test the idea before leaping in and building an airborne unit, so I built the prototype out of 1/2″ foam core board. The unit provided quite good stereo separation, and had considerably higher gain than the built-in mics on the Tascam DR-05, but it lacked bass punch. I wanted to figure out why before going from prototype to final design.

One clue came from another of Rob Danielson’s designs: PBMB2. His design calls for significantly larger wings than the original Crown SASS. The larger wings provide a larger boundary surface for the microphones to work with, and therefore provide gain at lower frequencies than the original from Crown. Since I’m planning to use this in the air, cross-section is an important design consideration I need to take into account: larger objects are more easily affected by the wind than smaller ones. Rather than using the larger wings from Rob Danielson’s PBB2N array, I stuck with the dimensions of the Crown SASS.

Another clue came from a set of posts on the micbuilders Yahoo group: Electrets mics need to be mounted flush with the end of their enclosures. Mine aren’t. They’re recessed several millimeters into their tubes and hide behind a layer of stainless mesh. Recessing the mics this way colors the sound they pick up.

Mono Mic Assembled

Unfortunately I learned this late in the game, after I’d already built all five of my mic enclosures as well as my airborne pseudo-SASS. Before going out and designing all new enclosures I decided to test this for myself. I disassembled one of my mics and tried sliding the mic deeper into the tube. I found that the more recessed it was, the more mid-range gain I got, and the less bass. Finally I pulled it out entirely, bare to the world, and tried it that way. I could easily tell the difference. There was a lot more bass, and the mic sounded a lot less tinny. (Hey, if I can tell the difference, it’s HUGE!) Time to design all new mic enclosures!

The last clue came from the folks at DIY Boundary Mics. They ran some tests on the array built by Vicki Powys and the modified Crown SASS with Sennheiser MKH20 microphones. Rob D. (Rob Danielson?) from DIY Boundary Mics noted that Vicki’s foam array lacked some of the lower frequency response the Crown SASS / MKH20 combination had. He attributed it to the soft nature of the boundary surface (foam). Paul Jacobson at DIY Boundary Mics ran a comparison between Vicki Powys’s array and a similar one made of untreated wood, similar to Rob Danielson’s array. The untreated wood array recovered some of the bass lost in the foam array. This agrees with Rob D’s conclusions about the hardness of the boundary surface.

Which leads me back to the prototype I built out of foam core. The outer surface of the foam core is relatively hard, but the foam itself is acoustically thin, and the foam core board has a high natural frequency. I’m guessing that some of the lack of bass punch in my prototype can be traced to the material I used to build the array and the lack of damping material in the array’s inner cavity. I needed something better.

Years ago I made a kite aerial 4×5 film camera out of birch plywood. I never was completely happy with the photos it produced, but it turned out super pretty. Since Rob Danielson was making boundary array mics out of wood, and since the wood SASS had better bass performance than Vicki’s foam one, I figured I could build mine out of wood as well.

I already had some 0.200″ baltic birch plywood left over from the 4×5 camera, so that’s what I used for the array body. The woodwork came together relatively quickly, but I couldn’t finish sealing up the box until I had the damping material glued in place. Here’s one problem with living on an island: no one sells acoustic materials. Rob Danielson used carpet padding in his PBB2N, so I went that route. Here’s another problem with living on an island: stores that sell carpet padding don’t like breaking up rolls! I finally wound up at Home Depot. I waited patiently in the flooring department until someone could help me. I’d already been to several stores, and had received more than my fair share of blank stares when I asked for one foot of carpet padding. I wasn’t expecting much.

The folks at Home Depot surprised me! When I asked for such a small amount, the guy in flooring said, “You building a speaker box or something?” “A microphone array, actually, but it’s the same idea.” “Cool!” He was super helpful, and sent me home with my one foot roll.

Eventually my DIY-SASS came together. It’s shown here with my original mic enclosures, but in the next few weeks I’m planning to swap them out with flush mounts:

DIY-SASS

It uses the same Primo BT-EM172 capsules as Vicki Powys’s array, though she used four and I only used two. The covering for the baffle gave me fits until I finally bent to common wisdom and used sheet metal. (I’d wanted to make it out of the same plywood I’d used for the rest of the SASS for cosmetic reasons, but I ran into structural issues.) The hardware store sold 6″x12″ aluminum for almost the same cost as 6″x12″ polished stainless, so I went with the stainless. But I had to bead blast the outside of it to keep myself from going blind when I took it out in the sun.

DIY-SASS Front

There are a lot of screw holes on this, both to hold the baffle cover in place and to attach the array to a tripod (or a KAS rig!) I’ve seen too many wood screws strip out over time, so I epoxied T-nuts into each screw hole to provide machine threads. Since  I do a lot of my KAP along the coast and plan to record sound in that environment as well, I went with as much stainless hardware as I could. Even so, I’m going to have to open the unit periodically to check the wiring for salt contamination. (One more reason to be glad I used T-nuts!)

DIY-SASS Bottom

Since I’m planning to use this on the ground as well as in the air I didn’t want to wire in a dedicated cable. I’ll only need 2-3′ for aerial work, but on the ground there’s good reason to put some distance between a microphone and the recordist. Having a way to swap cables seemed like a good idea, so I wired it with a 1/8″ TRS jack so I can use the cable of choice, depending on what I’m doing.

I’ve now used my pseudo-SASS in the field several times. I was pleased to find that the heavier construction worked, and that I got back a lot of the bass punch I’d lost with the foam core prototype array. I’m looking forward to trying it with the flush mounted microphone enclosures to see how much more bass I can recover.

Meanwhile I’m facing yet another design problem. Like any microphone, my pseudo-SASS array suffers from wind noise. I learned this the hard way while trying to record the sound of waves crashing on rocks.

In Dire Need of a Windjammer

The wind buffeting was more than the mics could handle, so I wrapped the whole thing with my folded up t-shirt. Even that wasn’t enough to cut the wind, so none of the files were usable. Bummer!

Unfortunately the wind there was nothing compared to the wind I’ll get when I hang this thing from a kite line. And since Rycote and Rode don’t make windjammers for DIY mic projects I’ll have to build my own. My last act of the weekend was to order a yard of 2″ pile 100% polyester artificial fur with the loosest backing I could find. As I finished checking out I couldn’t help thinking yet again, “You’re getting in deep, man.” I fear I’ll learn how to sew fake fur before I learn how to make my own kites.

– Tom

Posted in Audio, Engineering | Tagged: , , , , , , | 3 Comments »

Finishing the DIY Microphones (v.1.1)

Posted by Tom Benedict on 14/07/2015

The more I thought about the hot glue closure on the back of the microphones, the less I liked it. Don’t get me wrong. It works well. But it’s… permanent. I know the BT-EM172 capsules are only $10, and I know the rest of the microphone is largely scrap-boxed, but I hate to make a thing that can’t be serviced when it needs it.

So I re-designed the enclosure to include an end-cap. It’s drilled out 1/4″ to take a cable grommet, and has three #2-56 screws placed every 120 degrees around the periphery to hold it in place.

BT-EM172 Microphone Enclosure - Exploded View

The end caps took about fifteen minutes apiece to make, and were a comfortable fit in the back of the microphone bodies I made previously. Unfortunately, drilling and counter-sinking the screw holes for the end cap meant I needed to re-coat the microphone bodies along with the end caps. Since I had to re-coat them, I added grooves to each mic body to accommodate a Shure RK183T1 lavalier clip. I’m pretty sure a generic clip for a 9/16″ diameter mic would’ve worked fine, but these turn out to be tough to find. There are several listed on Ebay, but if you look at the metric equivalents, the specs say they fit something around 7-9mm in diameter. 9/16″ is closer to 14mm, so I think something was lost in translation. The clips from Shure will fit. (For shure! Har!)

Countersinking Screw Holes

I wasn’t happy with my previous coating job, so I came up with another way to apply the coating. I shoved each part onto a wooden dowel of the appropriate diameter (3/8″ for the end caps, 1/2″ for the mic body), and chucked it in a drill. I applied the Cerakote with the drill spinning. This gave each part a very uniform coating, and let me hit every outside surface without running into my fixture. I loaded the parts in the oven, dowels and all. On a whim I coated the screw heads, too, so I wouldn’t have shiny stainless screws in a black microphone body. Unfortunately the spray gun malfunctioned, so two of the mic bodies didn’t turn out as nice as I’d like. I slated those for the pseudo-SASS array, where they won’t be seen, and saved the two “good” ones for lavalier mics. Note to self: test the spray gun before loading product into it!

Parts Ready to Cerakote

Once the Cerakote cured it should’ve been a simple matter of assembling each of the mics. But I love to fiddle. I assembled the two for the pseudo-SASS array since I already had that cable made. But I needed more cable for the lavalier mics. Even though I’m already using Mogami W3031 cable for the other mics, I ordered 100′ of Mogami W2697 from Redco Audio to use for the generic lavs (only 20′ of which I plan to use). W2697 is almost identical to W3031, except for the way the shield is constructed. W3031 uses a braided shield. W2697’s shield is served (wrapped). Electrically they’re identical. But a served shield is easier to work with when making cables. I’ll have to wait for the cable and clips to come in before finishing the generic lavs.

Completed Mic Bodies

Rather than waiting like I did with the mono mic I built out, I grabbed my pseudo-SASS array and my recorder, and hiked out to the rocks south of Hapuna Beach. The last time I was there the waves were big, and made big, dramatic crash-bam-booms on the rocks. Of course that was in the winter. The summer wave pattern is a lot more bathtub-like, so the sound was a lot more subtle. Still, I ran several side-by-side comparisons of the pseudo-SASS against the built-in mics on the Tascam DR-05. I put together a set of 30-second clips comparing the two. The recording has eight tracks, alternating between the DR-05 built-in mics and the BT-EM172 array, done at four locations. When listening, keep in mind that the gains are different on the two mics, as are the frequency responses. I did no processing on the tracks aside from cutting and fading, so some tracks are louder than others. That’s a function of my technique in the field (or lack thereof), not the microphones themselves. This test was only so I could tell how well the pseudo-SASS array was separating the two channels.

The pseudo-SASS performed well enough I want to build a real one out of some 1/4″ baltic birch plywood I have in the shop. I still haven’t tested my prototype from the air, but it’s easy enough to include 1/4″-20 sockets top and bottom so I can mount it either way. More photos and sound samples to come!

– Tom

P.S. I’m not keen on the way clips from Soundcloud show up on my web site. I’ve seen other people include Soundcloud clips on their sites that are nice, small, and easily worked with. This thing is ungainly! If you know how to fix this, please let me know.

Posted in Audio, Engineering, Machining | Tagged: , , , , , , , , | Leave a Comment »