The View Up Here

Random scribblings about kites, photography, machining, and anything else

Posts Tagged ‘DIY’

BM-800 Microphone Conversion Part 2

Posted by Tom Benedict on 22/10/2016

This is the second half of a two-part article describing my conversion of a BM-800 microphone to an Alice microphone using a Transsound TSB-2555B cardioid capsule. All of this is based off of a pair of Instructables written by Jules Ryckebusch: Modify a cheap LDC Condenser microphone and Build the MS Alice Stereo Microphone.

Part 1 of this article showed pretty pictures of the donor mic (a Neewer NW-800 with an excess of bling), a description of the cable that came with the mic (which I don’t intend to use), photos of the mic in various stages of disassembly, and a CAD drawing of the salient features inside the microphone to help others lay out circuit boards for their own conversions.

Since writing part 1, all of the bits and pieces I ordered to do the conversion arrived: enough electronics to build three Alice boards, and a TSB-2555B capsule to put in the first one.

Everything for an Alice Conversion

Before populating the boards I did a test fit to make sure they would actually fit. I was pleased to see how well the screw holes lined up, and I came pretty close with the taper.

NW-800 With Alice PCB

The next step was to populate the boards. Opinions differ on how to wire the high-impedance (high-Z) end of the board, so I started with all of the low-Z components.

The circuit used in Jules’s first article had zener diodes on the output stage to protect it against over-voltage on the XLR pins. The circuit as-built in his second article omits the zeners since the 2N5087 transistors are rated for more than the 48V likely to be seen on an XLR connector. I ordered the zeners, but left them out for now.

Alice Trio with Low-Z Components

After I’d already wired all the boards I installed one in the mic and ran into my first problem: With the board installed right-side-up, the 47uF capacitor pokes up high enough that it interferes with the body tube. For my first mic I’m planning to install the board up-side-down to give the capacitor more room. But if I wind up building the MS mic from Jules’s second Instructable, I’ll need to install new capacitors that lay flat against the circuit board.

BM-800 Alice Board Placement

The reason for the difference of opinions on the high-Z end of the circuit is that it’s sensitive to contamination: leftover solder flux, dirt, dirt combined with humidity, oxidization, etc. on the high-Z end can all cause unwanted noise in the mic. Jules soldered his components to the board without issue. Others have used Teflon standoffs to float that part of the circuit above the PCB. Homero Leal built his Charis mic by point-to-point soldering the high-Z components, letting them float above the board without standoffs. Scott Helmke, the original designer of the Alice circuit, solders the high-Z components directly to the back of the mic capsule. For my first pass at this I soldered the low-Z legs of the FET to the board, but floated the high-Z circuit without stand-offs, similar to Homero’s Charis mic. I can always change my mind later and re-wire them.

High-Z Components Air-Floated

With the board built, the next step was to add 22nF capacitors between pins 1 and 3 and pins 1 and 2 on the XLR connector to provide additional RF noise filtering. After that I installed the modified connector and the board in the mic body.

Alice Board and XLR with RF Filter Caps

The rest of the action takes place inside the headbasket.

It’s possible to cut away the original mic capsule to leave a saddle for mounting the TSB-2555B, but I wanted to make an entirely new saddle. Chalk some of this up to not wanting to make a modification I can’t back out. Chalk some of it up to my wanting a machining project to go along with the electronics project. Either way it needlessly complicates an otherwise pretty simple project.

Space inside the headbasket is tight, so rather than run into more interference issues I fleshed out the 2D CAD drawing and turned it into a 3D model. The space constraints almost entirely dictated the shape of the new saddle and post. The mic frame is drilled and tapped for M2.5 screws on a 10mmx15mm rectangular pattern, only two of which are used on the original saddle. I chose to use all four. The mic wires pass through holes spaced 20mm apart, centered on the long axis of the bolt pattern. In the CAD model I indicated these with 3.13mm holes, but in the final part I cut them as slots to make installing and removing the capsule easier.

Mic Saddle - CAD vs. As-Built

I attached the TSB-2555B capsule to the saddle with E-6000 silicone adhesive. A better method for the saddle shape I used would’ve been a polyurethane adhesive like Gorilla Glue, but I wanted to be able to remove the capsule in case I decide to add shock isolation inside the mic to cut down on handling noise. As-built the capsule can be removed by passing a fine wire between the capsule and the saddle, cutting the silicone bond.

EDIT: The first time through, I missed an important step: One of the charms of the Pimped Alice circuit is the potentiometer next to the 1Gohm resistor. It allows you to bias the FET properly, regardless of which FET you use. The catch is that by definition, if you don’t do anything with the potentiometer it will not be properly biased! In all ignorance I soldered everything up, closed up the mic, and went testing. Even with an improperly biased FET it still performed beautifully. I did go back and do a proper job of it, though.

In Jules’s first Instructable, toward the end, there’s a nice write-up for how to bias the FET. The catch is that this step must be done before the capsule is soldered to the board.

With the FET properly biased and the capsule attached to the saddle and post, all that was left was to put it all together and close it up.

Finished BM-800 / TSB-2555B Alice

I did a quick side-by-side against one of my Primo-EM184 cardioid mics. The Alice runs a little hotter, but not by too much. I’m reserving further judgement on the new mic until I have a chance to get it out in the field and try it on some quiet sources.

Tom

Posted in Audio, Electronics, Engineering | Tagged: , , , , , , , , , | 3 Comments »

Building New Mics

Posted by Tom Benedict on 17/09/2016

When you’re faced with a dilemma like choosing the next step to improve your recording gear, instead of finding the right answer to the question, sometimes it’s more fun to dodge the issue completely and go off on a tangent.

So I went off on a tangent! Building new microphones!

I’ve currently got two projects in the works. A parabolic mic and a self-contained mid-side mic.

The Parabolic

I’m basing my parabolic mic off of the family of parabolic mics  from  Telinga Microphones. The mics from Telinga offer all kinds of neat options. One contains a cardioid mic facing the parabola and an omni facing away from the parabola. This lets you record a distant sound and the ambient sound field at the same time on two different channels. Another contains two omnis on either side of a baffle plate so you can record a distant sound in stereo.

But at its simplest, a parabolic microphone uses a parabolic reflector to direct pressure waves at a single microphone located at or near its focus. That’s where I’m starting.

I picked up a 22″ parabolic dish from sdill471 on Ebay. He sells them for around 50USD and ships all over the place, including Hawaii (yay!), using USPS shipping.

The microphone for this project is the first EM-172 lavalier mic I built back when I started building external mics for my DR-05. It’s since been converted to XLR and received the full shielded treatment the rest of my EM-172 mics got when I did that conversion.

The rest of the project will be to make all the mechanical bits to place the EM-172 mic at the focus of the dish. I’m drawing a good bit of inspiration from WW Knapp’s Homemade Parabolic Mic page, though I’m making two big departures Knapp’s design: The first is to think more in terms of parts I can make in a machine shop rather than what I can find at the hardware store. (This departure is called “needlessly complicating a good, simple design”.) The other is to take a tip from Klas Strandberg at Telinga: You don’t always want the mic to be at the exact focus of the paraboloid. Having the ability to rack the microphone through focus gives you some much needed flexibility in the field to widen or narrow the pickup pattern of the mic, or even to tune which frequencies are focused on the mic by the dish.

I’ll post the design and build articles once I’ve finished the mic.

Mid-Side Microphone

The entire idea for the self-contained mid-side microphone comes from an Instructables article written by Jules Ryckebusch. Jules took a BM-800 mic – about ~20USD off of Ebay depending on the seller – gutted it, and replaced its innards with two Pimped Alice amplifier boards and three TSB-165 capsules. The really clever part is how he did it, but for any of that to make sense it helps to understand how mid-side microphones work.

The easiest way to understand mid-side recording is to read a really good article about it. What I wrote below won’t be nearly as good, so I urge you to follow that link. That being said, here’s my take on mid-side:

Back when recording was in its infancy no one even thought in terms of stereo recordings, quadrophonic, 5.1, 7.1, or any of the other immersive formats we’ve since come up with. Mid-side was one of the earliest stereo techniques, patented by Alan Blumlein in 1933.

Mid-side uses two microphones: one to pick up the center part of the sound field (the “mid” mic) and another to pick up the sound on either side (the “side” mic). In most cases the mid microphone is a cardioid, which preferentially picks up sound in front of the mic. In all cases the “side” mic is a figure-eight – a microphone that picks up sound in two opposite directions, but nowhere else.

To create what we consider a conventional Left-Right stereo image from a Mid-Side (M/S) recording requires a little math. The equations look like this:

Left = Mid + (+Side)

Right = Mid + (-Side)

In the equations the Mid channel is taken as-is. The Side channel is used twice: first it’s used as-is (+Side) and the second time it’s used inverted (-Side).

As wonky as that sounds, and as convoluted as the post-processing sounds, it offers some distinct advantages when mixing the tracks afterward. Want a wider stereo sound? Mix in a little more of the Side channel and a little less Mid. Want to focus the listener’s attention on the bird in front of the mic and down-play the forest full of frogs chirping in the background? Bump up the Mid and turn down the Side. Want to mix a mono track to go with an accompanying video on Youtube? Use only the Mid channel for clean mono without any phasing issues. The real strength of mid-side is the flexibility and versatility it offers after the fact.

The one catch with mid-side, as with all stereo techniques, is that it requires two distinct microphones. ORTF requires two cardioid mics and a bar to mount them on. A/B requires two widely spaced omnis. Even my SASS consists of two omni mics mounted in an admittedly rather large baffle. M/S is no different, requiring a cardioid and a figure-eight.

What makes M/S special is that you want the microphones to be as close to each other as you can get them. By its very design it’s inherently physically compact. (Side note: This is true of X/Y as well, which uses two cardioids pointing 90 degrees to each other, and of the Blumlein arrangement, which replaces the cardioids with figure-eights.)

Which leads us back to Jules’s M/S microphone, which takes “compact” to a new level by cramming multiple microphones into just one mic body. That makes for a light, portable recording kit that’s quick to set up and tear down; perfect for traveling, or for recording subjects that require substantial hiking to reach.

So why three capsules instead of two? Jules realized that if he took two of the TSB-165 cardioid capsules, faced them in opposite directions, and wired them 180 degrees out of phase with each other in series, they act like a single microphone with a figure-eight pickup pattern. Add a third TSB-165 capsule in the center and you have all the makings of a well matched mid-side microphone.

Where Things Stand Now

My parabolic reflector arrived last week. The mic for the parabolic project is already in-hand, though I may have to (yet again) cut it out of its housing and install it in a new one. I’m in the process of designing the mechanical bits, and should be able to start making them in the next couple of weeks.

I ordered the BM-800 donor mic for my mid-side mic just this morning. Jules posted a link to download the Pimped Alice PCB files that Homero Leal designed based off of Scott Helmke’s original Alice design. Once I have the board mounting hole pattern off of the BM-800 microphone, I’ll add those to Homero’s PCB layout and send the files off to OSH Park for fab.

Work on both of these is contingent on my getting a number of other gotta-do’s off my plate, but I hope to make some progress on both in the next couple of weeks.

Tom

Posted in Audio, Engineering | Tagged: , , , , , , , , , , , , , , , | 1 Comment »

Clippy EM184 Cardioid Mics and ORTF

Posted by Tom Benedict on 05/08/2016

I’d planned to write an article describing my trip to Edinburgh for SPIE 2016, but I got side-tracked. That article is yet to come.

I did some audio recording while I was there, but not nearly as much as I’d have liked. I wound up packing all of my sound gear, including my SASS, but the few times I pulled it out it rained. The one time I thought I’d get to use it for sure – poking it out of my hotel room window to record traffic sounds – I found it was too big to fit through the window. I wound up using spaced omnis to record traffic sounds, but the SASS didn’t get used even once. I found myself wishing I had other options.

A number of common stereo techniques require the use of cardioid microphones. Up until my trip to Scotland I only had omni microphones in my bag. There are still some stereo techniques that use omnis that I haven’t tried, but I’ve been wanting to play with cardioid mics for some time. Step one was to buy or make some cardioids.

The same circuit I used to make my EM172 omni mics can be used with other FET-enabled Primo capsules, including the EM184 cardioid capsule. FEL Communications (micboosters) sells these on their site either as individual caps or as matched pairs. I picked up a matched pair along with a pair of Clippy mic bodies, clips, and windscreens. I still had some Mogami cable and Neutrik connectors on hand, so I just drew from that stock to build out the new mics.

The Clippy mic bodies work nicely with the cardioid capsules, and the resulting mics have very little pickup at the back. It’s not zero, though, so you do have to be aware of everything that’s not directly in front of the mic. I’d been warned that cardioids are more sensitive to wind than omnis, and these mics bear that out. They’re stupid sensitive to wind. Even with the foam windscreens and some furries I got from Cat Ears, the slightest bit of wind kills them. I need to figure out some other solution for wind protection.

Step two was to come up with a way to hold the mics so they record a clean, well separated stereo image. There are plenty of choices for this, but the one I chose was ORTF, a technique designed around 1960 by Office de Radiodiffusion Télévision Française (ORTF) at Radio France. (See? Astronomers aren’t the only ones to recycle their acronyms!)

ORTF requires the microphones to be separated by 170mm and angled away from each other at a 110 degree angle. It’s a bit of a pain to set up in the field without some way to gauge the angle, so many people favor other setups such as NOS (Nederlandse Omroep Stichting) in which the mics are separated by 300mm and are angled out by 90 degrees. I wanted to play with ORTF, though, so I decided to solve the setup problems with a fixture.

Clippy ORTF Bar

Since the Clippy mic bodies register nicely with their lapel clips, I used the clips to orient the mics both in location and rotation. The clips have a tab on top that’s just over 6.2mm wide. I made 6.5mm wide slots at either end of a bar to receive the clips.

Clippy ORTF Bar With Mics

I wanted to keep things simple so I didn’t have to fuss with stuff in the field, and this lets me do that. With the clips fully seated in the slots the mics are angled out at a 110 degree angle and are 170mm apart. It takes more time to unroll the cables than it does to install the mics on the fixture. And the flat bar packs down a lot smaller than my SASS.

Clippy ORTF Bar Slot Detail

The bar I used was just over 4mm thick. I cut the slots to leave 2mm of material for the mic to clip to. This wound up being a little thin, but it made for a nice, deep slot to register the clip in.

Clippy ORTF Bar Velcro

The bare metal of the bar was too slick for the clip to get any real grip, so I put a tab of Industrial Velcro on the bottom of the bar under each of the slots so the clips would have something to grab onto.

I’m pleased with how easy it is to use this setup, and it’s tough to beat how compact it is. But I’m not 100% satisfied with how it works in the field just yet. I already mentioned the wind issue. Even with double protection the mics saturate when almost any amount of wind touches them. They’ll probably fare better inside  a Rycote or a Rode blimp, but for now I’ll have to save them for wind-free environments.

The sound is also significantly different from that of my SASS. (Sorry, no side-by-side comparisons yet.) The SASS picks up more reverberation than the ORTF setup, so there’s more of a sense of the space with the SASS than with the ORTF. But you don’t always want that sense of space. During an earlier test I had one of my omnis and one of the cardioids in a car. The omni picked up so much of the car noise, it was difficult to hear the people in the car speaking. The recording from the cardioids was much cleaner.

Needless to say there’s still plenty of testing to be done. Once I learn the strengths and weaknesses of this setup and have a better handle on wind protection, I’m sure it’ll see plenty of use.

Tom

Posted in Audio, Engineering | Tagged: , , , , , , , , , , , | 4 Comments »

An Inexpensive Shock Isolation Mount

Posted by Tom Benedict on 17/06/2016

One of the problems with building a funky microphone setup is that off-the-shelf gear won’t always work with it. It’s pretty straightforward to find wind protection for a shotgun mic or for a single omni. No one makes wind protection for do-it-yourself SASS arrays. (And no, that’s not what this post is about. That’s still a work in progress.)

Up until now I’ve run my DIY-SASS without shock isolation. It’s worked after a fashion, but any time I position my gear in foliage I wind up with tap-tap-tap noises of branches or long grass touching the tripod legs. More than one person has pointed out that even rudimentary shock isolation would get rid of most of that.

Unlike wind protection, it’s possible to adapt other shock isolation mounts to my DIY-SASS. Any of the lyre-style mounts for handheld recorders would work fine. But most of these are relatively tall. I wanted something more compact. And cheaper, if I could swing it. Here’s what I came up with:

Microphone Shock Mount Top

It’s adapted from an anti-vibration camera mount for a multi-rotor. As I received it, the mount consisted of two carbon fiber plates with four vibration damping balls (yes, that’s the real term). The balls are replaceable, and can be swapped out for harder or softer ones. The mount had 1/4″ clearance holes top and bottom. I wanted this to fit between a tripod and my DIY-SASS, or between my DR-70D and my DIY-SASS, so I needed a threaded hole on the bottom and a threaded thumbscrew on top.

Microphone Shock Mount Bottom

Adding a threaded hole to the bottom was relatively straightforward. This would’ve been prettier with a round piece of metal, but I had the plate stock in-hand, and it was almost the right size. I squared it up, transferred the hole pattern from the carbon fiber plate to the aluminum, and added a 1/4″-20 threaded hole in the middle.

Adding the thumbscrew to the top was a little more involved. I had some 2″ 6061 aluminum round on-hand, so I knurled it at that diameter, faced off the front to leave an 0.250″ diameter x 0.375″ long boss, and threaded it with a 1/4″-20 die.

Normally you’d want to single point thread a boss like that to avoid all the normal ills of die cut threads: drunken threads, off-axis starts, offset threads, etc. But since this only had to screw into a 1/4″ T-nut to hold my microphones in place, a die cut job was fine. I parted the thumbscrew off the bar, flipped it around, and faced off the other side.

The damping balls that came with the mount turned out to be a pretty good match for my DIY-SASS. I’d have to swap them out for softer ones if I used it with my DR-05 handheld recorder. But since this is probably going to be a permanent addition to my DIY-SASS, it’s fine as-is.

I finally had the opportunity to test this in a systematic way. I put two contact mics on my tripod legs and tapped the center column while adjusting the gains on those channels until they both read the same. Then I moved one of them to the top of my SASS and tapped the center column to see how much attenuation the isolator provided. I recorded both configurations so I could compare in Audacity. The isolator very consistently provided 21dB of attenuation. I don’t know how that compares to a commercial isolator like one of the lyre mounts I mentioned earlier, but it’s a darned sight better than the zero dB attenuation I’ve had up to this point.

I always feel a little weird posting a DIY that requires the use of a machine tool. In this case it involved both a lathe and a mill. But the core idea of this is to adapt a multirotor camera mount to microphones for field recording. There are other ways to get that threaded hole and thumbscrew. Imagination and ingenuity are powerful tools of their own.

Have fun!

Tom

Posted in Audio, Engineering | Tagged: , , , , | 2 Comments »

DIY Microphone: EM172 Capsule and XLR Plug

Posted by Tom Benedict on 05/03/2016

This is the last in a four part series about powering the Primo EM172 microphone capsule. Part 1 outlined the problem of how to provide 5-10v to the capsule and predicted some results. Part 2 shared some results and pointed out that the gain differences between inputs on my recorder invalidated my predictions. Part 3 discussed my reasons for going with XLR connectors on all my microphones, and some of the details of that. This last part puts it all together into a step-by-step DIY for building microphones with Primo EM172 capsules, powered by 48v phantom power on an XLR plug.

If you need to build a microphone based around the EM172 capsule that plugs into the 1/8″ mic jack on your recorder, or a laptop, tablet, whatever, there are already several excellent tutorials out there. Rather than adapt this one to your needs, refer to one of the existing tutorials. The two I used when I first started building EM172 microphones were the ones on Zach Poff’s page and the one on Wild Mountain Echoes.

In this DIY I’m going to assume you already have a plan for making a mic body. I made mine out of Delrin bar stock on a lathe. Others have used Sharpie pen caps, which also provide a nice clip for clipping the mic to things (see the tutorial on Wild Mountain Echoes), PVC pipe, brass tubing, etc. When mounting the mic in the mic body, make sure the front of the capsule is flush with or slightly proud of the mic body. Don’t recess it. I made that mistake with my first set of mics and wound up with mics that sounded like they were inside a sewer pipe. If in doubt experiment by wiring up the mic completely, plugging it in, and listening to it as you slide it in and out of the mic body you plan to use. After all, this is DIY. Experimentation is part of the deal.

Primo BT-EM172 to P48 XLR Wiring

Credit for the circuit goes entirely to David McGriffy, and credit for the component choice goes entirely to David McGriffy and Ricardo Lee. Ricardo Lee’s writeup, SimpleP48wm61, goes into the theory of the circuit and the reasons for the component choices in depth. It’s the real reference for this. (In order to use that link to download Ricardo’s file, you may need to be a member of the micbuilders group on Yahoo!. If you’re doing this DIY you’re a mic builder, so it’s not a stretch.)

EDIT: A couple of weeks ago Akira So brought to my attention that I had the capacitor poloarity reversed from how David McGriffy and Ricardo Lee have it in SimpleP48. I’ve since corrected the schematic here. Credit where credit’s due.

EDIT: Akira also pointed out that my value for R (120k) resulted in something like 1.3-1.5V at the capsule. I experimented with a number of resistors to see what value of R would produce 7.5V at the capsule on my recorder, and for a Tascam DR-70D, R=40k produces just over 7.5V. When you do this build, you will have to find what works best for your equipment.

EDIT: I also swapped the supplier for the EM172 from Frogloggers to Micbooster (FEL Communications). I haven’t heard from Gene at Frogloggers in a while. Hoping he’s doing ok.

For my build I used the following:

I also used some metal tape (copper in my case, from the local gardening center), heat shrink of various sizes, and the solder I found on the bench in the lab. (My Alphametals solder I’ve been using for the past 20 years isn’t ROHS certified, so I can’t say “use this stuff, it’s great!”)

Not including the tools necessary to fabricate the mic bodies, you’ll also need:

  • Soldering iron (temperature regulated if possible)
  • Source of heat for heat shrink (heat gun, lighter, etc.)
  • Assortment of wire cutters, strippers, fine tip pliers, etc.

Since most of the bodies people use for these require the mic to slide in  from the front end of the housing, we’ll start with the mic capsule.

EM172 Back End

The first step is to strip one end of the cable, trim back the red and white wires to a workable length, and still leave plenty of shield exposed. The red and white wires are then soldered onto the appropriate pads on the capsule.

Warning: The EM172 capsule is sensitive to heat. These two photos were made with a capsule I’d killed using an unregulated soldering iron, which is why the capsule looks a little ugly. If you have access to a regulated iron set your iron no higher than 735C and don’t hold the iron on a pad for more than a few seconds. If you don’t have access to a regulated soldering iron, be sure to get EM172 capsules with stub leads already soldered in place. The tutorial on Wild Mountain Echoes uses capsules with stub leads, so you can see how she did it. Do all your work on the stub leads. Don’t fry your microphones!

EM172 With Wires

Now we build the shielding around the capsule itself. Insulate the sides and back of the capsule with some heat shrink.

Capsule Isolated

Be sure to account for every strand in the shield as you bring it up and over the heat shrink. Wrap with foil tape and trim back the shield so no wires protrude. Be sure no wires cross over the heat shrink and touch the front of the capsule.

Making a Shield

Apply a second layer of heat shrink over the foil tape. I like to apply a short length of colored heat shrink to help me identify which mic is which when I’m running wires and plugging things in out in the field.

Heat Shrunk Ready To Go

At this point go ahead and run the mic cable through your mic body, but don’t mount the capsule just yet. Once you’ve soldered the connector end of the cable, it’s a good idea to test everything to make sure you didn’t make any soldering mistakes, and to make sure the capsule didn’t get damaged during soldering. Strip the other end of the cable, leaving a little more wire to work with than on the capsule end. Thread the wire through the end cap for the XLR connector and set it aside. Since the XLR connector provides its own shield you don’t have to do any metal tape trickery on this end. Gather the wires from the cable’s shield, twist into a bundle, and cover with heat shrink tubing. This is also a good time to apply a length of colored heat shrink to match the capsule end of the cable.

Cable Prepped With Shell

Grab the XLR connector body in a vise or some other holding fixture. If you don’t have a vise, a set of vise-grip pliers with tape over the serrated part of the jaw works well. Just don’t grab it so hard that the connector body is damaged or distorted. Another way to hold these connectors that works great is to have the mating connector screwed into a board. Plug the connector you’re working on into its counterpart and solder to your heart’s content. (I used a vise.)

Trim back the leads on the capacitor and resistor to something reasonable that’ll fit inside the XLR connector. Save the snipped off bits of the leads. One of these works well to bridge from pin 1 to the ground tab.

Resistor and Capacitor

Solder a leftover component lead from pin 1 to the ground tab. Next, solder one end of the resistor to the ground tab as well. Next, solder the (-) end of the capacitor to pin 2. Finally, tie the two free ends of the capacitor and resistor together.

XLR Plug with McGriffy Components

All that’s left is to solder the cable onto the plug. Red goes to pin 3, white goes to the (+) lead of the capacitor as well as the free end of the resistor, and the cable’s shield is soldered to the ground tab. (In this photo the connector is rotated 180 degrees from how it’s drawn in the schematic, but that’s how the solder cups are oriented. Flip it around in your mind and it’ll make sense.)

XLR Plug with Cable

At this point your microphone’s electronics are finished. Put the connector together and screw things tight.

This is a good time to test the mic to make sure nothing went wrong. Plug it into your recorder, turn on phantom 48v power, and dial up the gain. If all went well you should have a low noise microphone ready to be installed in its mic body. If not, go back and check each step to find out what went wrong.

Finished Mic

Have fun recording!

Tom

Posted in Audio, Electronics, Engineering | Tagged: , , , , , , , , , , | 80 Comments »

Pseudo-SASS Array

Posted by Tom Benedict on 03/09/2015

Following the successful testing of the new mics, I turned my attention toward building a pseudo SASS array. My prototype design was a copy of a copy of a copy of… well… a copy. This becomes important later, because it’s lessons learned from one of those copies that drove part of my final design. First, a bit of history, mostly gleaned from Vicki Powys’s web site:

The SASS, or Stereo Ambient Sampling System, was designed by Michael Billingsley in 1987 for Crown International. It was (and still is) aimed at recording music performances, audiences, and other subjects that lend themselves to stereo recording. It offers relatively strong stereo separation in a small package. Crown sold the SASS with microphones built into the system, which worked well for its intended purpose. But the original microphones exhibited a high noise floor, and weren’t well suited for quiet subjects. Lang Elliott and Michael Billingsley modified a Crown SASS to work with higher-end microphones, and Walter Knapp took that concept and offered re-tooled Crown SASS units that would take, among other mics, the Sennheiser MKH20. This made it a viable choice for recording quiet ambient sounds and field recording.

More variations tailored to field recording continue to be made. Rob Danielson’s PBB2N, built out of wood and PVC pipe along similar lines to the Crown SASS, takes the same range of microphones as the units made by Walter Knapp, and offers better bass response. Vicki Powys, concerned about the weight of a wood array, took that concept and made her own version out of dense closed-cell foam (pool floaties) using Primo BT-EM172 capusles. After building her foam SASS, she did side-by-side tests with it against a Crown SASS with MKH20 microphones. The performance of the two were remarkably close.

The idea behind the Crown SASS, Rob Danielson’s PBB2N, and Vicki Powys’s SASS-LN2, is to baffle the microphones so that the array acts as a pseudo-binaural stereo pair similar to the human head. The wings act as boundary surfaces, and the foam baffle in the center partially absorbs sound from unwanted angles. The end result is a higher gain than a bare microphone, and considerably better separation than two microphones arranged as an X-Y pair. This photo of a Crown Audio SASS-P MkII was a later model that used PZM mics, but the overall shape didn’t really change much from the original SASS:

I built my prototype based off of measurements I took from a photo of an original Crown SASS, scaled to the overall size of Vicki Powys’s SASS-LN2. I wanted to test the idea before leaping in and building an airborne unit, so I built the prototype out of 1/2″ foam core board. The unit provided quite good stereo separation, and had considerably higher gain than the built-in mics on the Tascam DR-05, but it lacked bass punch. I wanted to figure out why before going from prototype to final design.

One clue came from another of Rob Danielson’s designs: PBMB2. His design calls for significantly larger wings than the original Crown SASS. The larger wings provide a larger boundary surface for the microphones to work with, and therefore provide gain at lower frequencies than the original from Crown. Since I’m planning to use this in the air, cross-section is an important design consideration I need to take into account: larger objects are more easily affected by the wind than smaller ones. Rather than using the larger wings from Rob Danielson’s PBB2N array, I stuck with the dimensions of the Crown SASS.

Another clue came from a set of posts on the micbuilders Yahoo group: Electrets mics need to be mounted flush with the end of their enclosures. Mine aren’t. They’re recessed several millimeters into their tubes and hide behind a layer of stainless mesh. Recessing the mics this way colors the sound they pick up.

Mono Mic Assembled

Unfortunately I learned this late in the game, after I’d already built all five of my mic enclosures as well as my airborne pseudo-SASS. Before going out and designing all new enclosures I decided to test this for myself. I disassembled one of my mics and tried sliding the mic deeper into the tube. I found that the more recessed it was, the more mid-range gain I got, and the less bass. Finally I pulled it out entirely, bare to the world, and tried it that way. I could easily tell the difference. There was a lot more bass, and the mic sounded a lot less tinny. (Hey, if I can tell the difference, it’s HUGE!) Time to design all new mic enclosures!

The last clue came from the folks at DIY Boundary Mics. They ran some tests on the array built by Vicki Powys and the modified Crown SASS with Sennheiser MKH20 microphones. Rob D. (Rob Danielson?) from DIY Boundary Mics noted that Vicki’s foam array lacked some of the lower frequency response the Crown SASS / MKH20 combination had. He attributed it to the soft nature of the boundary surface (foam). Paul Jacobson at DIY Boundary Mics ran a comparison between Vicki Powys’s array and a similar one made of untreated wood, similar to Rob Danielson’s array. The untreated wood array recovered some of the bass lost in the foam array. This agrees with Rob D’s conclusions about the hardness of the boundary surface.

Which leads me back to the prototype I built out of foam core. The outer surface of the foam core is relatively hard, but the foam itself is acoustically thin, and the foam core board has a high natural frequency. I’m guessing that some of the lack of bass punch in my prototype can be traced to the material I used to build the array and the lack of damping material in the array’s inner cavity. I needed something better.

Years ago I made a kite aerial 4×5 film camera out of birch plywood. I never was completely happy with the photos it produced, but it turned out super pretty. Since Rob Danielson was making boundary array mics out of wood, and since the wood SASS had better bass performance than Vicki’s foam one, I figured I could build mine out of wood as well.

I already had some 0.200″ baltic birch plywood left over from the 4×5 camera, so that’s what I used for the array body. The woodwork came together relatively quickly, but I couldn’t finish sealing up the box until I had the damping material glued in place. Here’s one problem with living on an island: no one sells acoustic materials. Rob Danielson used carpet padding in his PBB2N, so I went that route. Here’s another problem with living on an island: stores that sell carpet padding don’t like breaking up rolls! I finally wound up at Home Depot. I waited patiently in the flooring department until someone could help me. I’d already been to several stores, and had received more than my fair share of blank stares when I asked for one foot of carpet padding. I wasn’t expecting much.

The folks at Home Depot surprised me! When I asked for such a small amount, the guy in flooring said, “You building a speaker box or something?” “A microphone array, actually, but it’s the same idea.” “Cool!” He was super helpful, and sent me home with my one foot roll.

Eventually my DIY-SASS came together. It’s shown here with my original mic enclosures, but in the next few weeks I’m planning to swap them out with flush mounts:

DIY-SASS

It uses the same Primo BT-EM172 capsules as Vicki Powys’s array, though she used four and I only used two. The covering for the baffle gave me fits until I finally bent to common wisdom and used sheet metal. (I’d wanted to make it out of the same plywood I’d used for the rest of the SASS for cosmetic reasons, but I ran into structural issues.) The hardware store sold 6″x12″ aluminum for almost the same cost as 6″x12″ polished stainless, so I went with the stainless. But I had to bead blast the outside of it to keep myself from going blind when I took it out in the sun.

DIY-SASS Front

There are a lot of screw holes on this, both to hold the baffle cover in place and to attach the array to a tripod (or a KAS rig!) I’ve seen too many wood screws strip out over time, so I epoxied T-nuts into each screw hole to provide machine threads. Since  I do a lot of my KAP along the coast and plan to record sound in that environment as well, I went with as much stainless hardware as I could. Even so, I’m going to have to open the unit periodically to check the wiring for salt contamination. (One more reason to be glad I used T-nuts!)

DIY-SASS Bottom

Since I’m planning to use this on the ground as well as in the air I didn’t want to wire in a dedicated cable. I’ll only need 2-3′ for aerial work, but on the ground there’s good reason to put some distance between a microphone and the recordist. Having a way to swap cables seemed like a good idea, so I wired it with a 1/8″ TRS jack so I can use the cable of choice, depending on what I’m doing.

I’ve now used my pseudo-SASS in the field several times. I was pleased to find that the heavier construction worked, and that I got back a lot of the bass punch I’d lost with the foam core prototype array. I’m looking forward to trying it with the flush mounted microphone enclosures to see how much more bass I can recover.

Meanwhile I’m facing yet another design problem. Like any microphone, my pseudo-SASS array suffers from wind noise. I learned this the hard way while trying to record the sound of waves crashing on rocks.

In Dire Need of a Windjammer

The wind buffeting was more than the mics could handle, so I wrapped the whole thing with my folded up t-shirt. Even that wasn’t enough to cut the wind, so none of the files were usable. Bummer!

Unfortunately the wind there was nothing compared to the wind I’ll get when I hang this thing from a kite line. And since Rycote and Rode don’t make windjammers for DIY mic projects I’ll have to build my own. My last act of the weekend was to order a yard of 2″ pile 100% polyester artificial fur with the loosest backing I could find. As I finished checking out I couldn’t help thinking yet again, “You’re getting in deep, man.” I fear I’ll learn how to sew fake fur before I learn how to make my own kites.

– Tom

Posted in Audio, Engineering | Tagged: , , , , , , | 3 Comments »